Jie Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849381/publications.pdf

Version: 2024-02-01

272 17,404 69 122
papers citations h-index g-index

279 279 279 20044
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010, 51, 5283-5293.	1.8	1,370
2	Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Â Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005, 127, 14473-14478.	6.6	918
3	A Robust, Oneâ€Pot Synthesis of Highly Mechanical and Recoverable Double Network Hydrogels Using Thermoreversible Solâ€Gel Polysaccharide. Advanced Materials, 2013, 25, 4171-4176.	11.1	594
4	A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Selfâ€Healing Properties. Advanced Functional Materials, 2015, 25, 1598-1607.	7.8	511
5	Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 2015, 3, 3654-3676.	2.9	477
6	Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:Â The Molecular Basis for Nonfouling Behavior. Journal of Physical Chemistry B, 2005, 109, 2934-2941.	1.2	461
7	Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics, 2013, 29, 238-245.	1.8	318
8	Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophysical Journal, 2005, 89, 158-166.	0.2	310
9	Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir, 2004, 20, 8931-8938.	1.6	270
10	Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy and Environmental Science, 2015, 8, 1245-1255.	15.6	252
11	Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions. Chemistry of Materials, 2016, 28, 5710-5720.	3.2	237
12	Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chemical Engineering Journal, 2016, 285, 588-595.	6.6	229
13	Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. Journal of Materials Chemistry A, 2016, 4, 10885-10892.	5.2	225
14	A Novel Design of Multiâ€Mechanoresponsive and Mechanically Strong Hydrogels. Advanced Materials, 2017, 29, 1606900.	11.1	215
15	Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir, 2011, 27, 4906-4913.	1.6	201
16	Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics, 2015, 31, i221-i229.	1.8	201
17	Tanshinones Inhibit Amyloid Aggregation by Amyloid-β Peptide, Disaggregate Amyloid Fibrils, and Protect Cultured Cells. ACS Chemical Neuroscience, 2013, 4, 1004-1015.	1.7	180
18	Super Bulk and Interfacial Toughness of Physically Crosslinked Doubleâ€Network Hydrogels. Advanced Functional Materials, 2017, 27, 1703086.	7.8	180

#	Article	IF	CITATIONS
19	Models of \hat{l}^2 -Amyloid Ion Channels in the Membrane Suggest That Channel Formation in the Bilayer Is a Dynamic Process. Biophysical Journal, 2007, 93, 1938-1949.	0.2	175
20	Modeling the Alzheimer A $\hat{1}^2$ 17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities. Biophysical Journal, 2007, 93, 3046-3057.	0.2	167
21	Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir, 2015, 31, 9125-9133.	1.6	150
22	Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. Journal of Materials Chemistry B, 2014, 2, 2983.	2.9	149
23	Molecular Simulation Studies of the Orientation and Conformation of Cytochrome c Adsorbed on Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 17418-17424.	1.2	145
24	High strength and self-healable gelatin/polyacrylamide double network hydrogels. Journal of Materials Chemistry B, 2017, 5, 7683-7691.	2.9	144
25	Design of LVFFARK and LVFFARK-Functionalized Nanoparticles for Inhibiting Amyloid Î ² -Protein Fibrillation and Cytotoxicity. ACS Applied Materials & Interfaces, 2015, 7, 5650-5662.	4.0	140
26	Vitrimers: Current research trends and their emerging applications. Materials Today, 2021, 51, 586-625.	8.3	135
27	Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Scientific Reports, 2015, 5, 13578.	1.6	134
28	New structures help the modeling of toxic amyloidß ion channels. Trends in Biochemical Sciences, 2008, 33, 91-100.	3.7	133
29	Comparative Study of Heparin-Poloxamer Hydrogel Modified bFGF and aFGF for <i>in Vivo</i> Wound Healing Efficiency. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18710-18721.	4.0	133
30	Structural Stability and Dynamics of an Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35. Biophysical Journal, 2006, 91, 824-833.	0.2	131
31	Fracture of the Physically Cross-Linked First Network in Hybrid Double Network Hydrogels. Macromolecules, 2014, 47, 2140-2148.	2.2	130
32	Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. Journal of Chemical Physics, 2005, 122, 214702.	1.2	125
33	Engineering of Tough Double Network Hydrogels. Macromolecular Chemistry and Physics, 2016, 217, 1022-1036.	1.1	123
34	Assignment of Orthologous Genes via Genome Rearrangement. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 302-315.	1.9	120
35	Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects. ACS Applied Materials & Interfaces, 2017, 9, 20843-20851.	4.0	119
36	Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation. PLoS ONE, 2015, 10, e0121276.	1.1	117

#	Article	IF	Citations
37	Simultaneous Enhancement of Stiffness and Toughness in Hybrid Double-Network Hydrogels via the First, Physically Linked Network. Macromolecules, 2015, 48, 8003-8010.	2.2	116
38	SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Research, 2016, 44, D1011-D1017.	6.5	115
39	Synthesis and Characterization of Poly(<i>N</i> -hydroxyethylacrylamide) for Long-Term Antifouling Ability. Biomacromolecules, 2011, 12, 4071-4079.	2.6	114
40	Cholesterol Promotes the Interaction of Alzheimer \hat{l}^2 -Amyloid Monomer with Lipid Bilayer. Journal of Molecular Biology, 2012, 421, 561-571.	2.0	114
41	Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environmental Science & Environmental Science & 2017, 51, 12283-12292.	4.6	114
42	Origin of repulsive force and structure/dynamics of interfacial water in OEG–protein interactions: a molecular simulation study. Physical Chemistry Chemical Physics, 2008, 10, 5539.	1.3	112
43	Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta Biomaterialia, 2018, 71, 293-305.	4.1	112
44	Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Scientific Reports, 2017, 7, 2635.	1.6	107
45	Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing. Biomacromolecules, 2016, 17, 2168-2177.	2.6	99
46	Structural, morphological, and kinetic studies of \hat{l}^2 -amyloid peptide aggregation on self-assembled monolayers. Physical Chemistry Chemical Physics, 2011, 13, 15200.	1.3	96
47	Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter, 2014, 10, 7425-7451.	1.2	96
48	Dual Functionality of Antimicrobial and Antifouling of Poly(<i>N</i> -hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir, 2013, 29, 1517-1524.	1.6	95
49	Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter, 2017, 13, 911-920.	1.2	94
50	Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(3,4-ethylenedioxythiophenedioxythi	4.0	93
51	Achieving Highly Effective Nonfouling Performance for Surface-Grafted Poly(HPMA) via Atom-Transfer Radical Polymerization. Langmuir, 2010, 26, 17375-17382.	1.6	92
52	Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials. Langmuir, 2016, 32, 3315-3330.	1.6	90
53	Fabrication and Characterization of Heparin-Grafted Poly- <scp>l</scp> -lactic acid–Chitosan Core–Shell Nanofibers Scaffold for Vascular Gasket. ACS Applied Materials & Interfaces, 2013, 5, 3757-3763.	4.0	89
54	Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere, 2016, 146, 162-172.	4.2	88

#	Article	IF	CITATIONS
55	Inhibition of Amyloid-β Aggregation in Alzheimer's Disease. Current Pharmaceutical Design, 2014, 20, 1223-1243.	0.9	86
56	Design of a Molecular Hybrid of Dual Peptide Inhibitors Coupled on AuNPs for Enhanced Inhibition of Amyloid βâ€Protein Aggregation and Cytotoxicity. Small, 2017, 13, 1601666.	5.2	82
57	General Strategy To Fabricate Strong and Tough Low-Molecular-Weight Gelator-Based Supramolecular Hydrogels with Double Network Structure. Chemistry of Materials, 2018, 30, 1743-1754.	3.2	82
58	Synthesis and characterization of pH-sensitive poly(N-2-hydroxyethyl acrylamide)–acrylic acid (poly(HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter, 2012, 8, 7848.	1.2	81
59	Comparative Molecular Dynamics Study of Human Islet Amyloid Polypeptide (IAPP) and Rat IAPP Oligomers. Biochemistry, 2013, 52, 1089-1100.	1.2	80
60	Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir, 2018, 34, 97-105.	1.6	80
61	Engineering Antimicrobial Peptides with Improved Antimicrobial and Hemolytic Activities. Journal of Chemical Information and Modeling, 2013, 53, 3280-3296.	2.5	79
62	Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 Î⅓m by a low bandgap donor–acceptor conjugated copolymer. Journal of Materials Chemistry C, 2018, 6, 3634-3641.	2.7	79
63	Cross-Seeding Interaction between β-Amyloid and Human Islet Amyloid Polypeptide. ACS Chemical Neuroscience, 2015, 6, 1759-1768.	1.7	78
64	Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. Journal of Materials Chemistry B, 2018, 6, 950-960.	2.9	78
65	Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials, 2013, 34, 4714-4724.	5.7	77
66	Mechanically strong hybrid double network hydrogels with antifouling properties. Journal of Materials Chemistry B, 2015, 3, 5426-5435.	2.9	77
67	Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) Membranes via Atmospheric Plasma-Induced Polymerization for Enhanced Skin Wound Healing. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6732-6742.	4.0	76
68	Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 2021, 35, 695-722.	9.5	76
69	Surface Zwitterionization of Titanium for a General Bio-Inert Control of Plasma Proteins, Blood Cells, Tissue Cells, and Bacteria. Langmuir, 2014, 30, 7502-7512.	1.6	75
70	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.	4.1	74
71	Structure, Orientation, and Surface Interaction of Alzheimer Amyloid-β Peptides on the Graphite. Langmuir, 2012, 28, 6595-6605.	1.6	72
72	Annular Structures as Intermediates in Fibril Formation of Alzheimer A \hat{l}^2 (sub>17 \hat{a}^4 2. Journal of Physical Chemistry B, 2008, 112, 6856-6865.	1.2	70

#	Article	IF	CITATIONS
73	Support for the Coelomata Clade of Animals from a Rigorous Analysis of the Pattern of Intron Conservation. Molecular Biology and Evolution, 2007, 24, 2583-2592.	3.5	68
74	Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta Biomaterialia, 2014, 10, 751-760.	4.1	68
75	Introducing Mixed-Charge Copolymers As Wound Dressing Biomaterials. ACS Applied Materials & amp; Interfaces, 2014, 6, 9858-9870.	4.0	67
76	Synthesis and Characterization of Antifouling Poly($\langle i \rangle N \langle i \rangle$ -acryloylaminoethoxyethanol) with Ultralow Protein Adsorption and Cell Attachment. Langmuir, 2014, 30, 10398-10409.	1.6	66
77	Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau. Journal of the American Chemical Society, 2012, 134, 10271-10278.	6.6	63
78	Cross-seeding and Conformational Selection between Three- and Four-repeat Human Tau Proteins. Journal of Biological Chemistry, 2012, 287, 14950-14959.	1.6	63
79	A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Journal of Materials Chemistry B, 2016, 4, 5814-5824.	2.9	62
80	Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene, 2017, 36, 4975-4986.	2.6	62
81	OligoSpawn: a software tool for the design of overgo probes from large unigene datasets. BMC Bioinformatics, 2006, 7, 7.	1.2	60
82	Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B, 2018, 6, 56-67.	2.9	58
83	Molecular Dynamics Simulations of Low-Ordered Alzheimer \hat{l}^2 -Amyloid Oligomers from Dimer to Hexamer on Self-Assembled Monolayers. Langmuir, 2011, 27, 14876-14887.	1.6	57
84	The crosstalk between EGF, IGF, and Insulin cell signaling pathways - computational and experimental analysis. BMC Systems Biology, 2009, 3, 88.	3.0	56
85	SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics, 2010, 26, 141-142.	1.8	54
86	Tabersonine Inhibits Amyloid Fibril Formation and Cytotoxicity of Al̂²(1–42). ACS Chemical Neuroscience, 2015, 6, 879-888.	1.7	54
87	Molecular interactions of Alzheimer amyloid- \hat{l}^2 oligomers with neutral and negatively charged lipid bilayers. Physical Chemistry Chemical Physics, 2013, 15, 8878.	1.3	53
88	Functional polymer thin films designed for antifouling materials and biosensors. Chemical Papers, 2012, 66, .	1.0	52
89	Probing the Structural Dependence of Carbon Space Lengths of Poly(<i>N</i> -hydroxyalkyl) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 Tf
90	The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polymer Chemistry, 2017, 8, 4659-4672.	1.9	52

#	Article	IF	CITATIONS
91	Principles of nanostructure design with protein building blocks. Proteins: Structure, Function and Bioinformatics, 2007, 68, 1-12.	1.5	51
92	Structural Polymorphism of Human Islet Amyloid Polypeptide (hIAPP) Oligomers Highlights the Importance of Interfacial Residue Interactions. Biomacromolecules, 2011, 12, 210-220.	2.6	50
93	Probing ion channel activity of human islet amyloid polypeptide (amylin). Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3121-3130.	1.4	50
94	The aggregation-induced emission enhancement properties of BF2 complex isatin-phenylhydrazone: Synthesis and fluorescence characteristics. Dyes and Pigments, 2015, 113, 502-509.	2.0	50
95	Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Research, 2018, 46, 6069-6086.	6.5	49
96	Sequence analysis of p53 response-elements suggests multiple binding modes of the p53 tetramer to DNA targets. Nucleic Acids Research, 2007, 35, 2986-3001.	6.5	47
97	Polymorphic Structures of Alzheimer's β-Amyloid Globulomers. PLoS ONE, 2011, 6, e20575.	1.1	47
98	Consensus features in amyloid fibrils: sheet–sheet recognition via a (polar or nonpolar) zipper structure. Physical Biology, 2006, 3, P1-P4.	0.8	46
99	Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes. Langmuir, 2016, 32, 4113-4124.	1.6	46
100	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
101	Transport diffusion of liquid water and methanol through membranes. Journal of Chemical Physics, 2002, 117, 808-818.	1.2	44
102	Minimum Common String Partition Problem: Hardness and Approximations. Lecture Notes in Computer Science, 2004, , 484-495.	1.0	44
103	Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. Bioinformatics, 2015, 31, 1060-1066.	1.8	43
104	Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. ACS Chemical Neuroscience, 2017, 8, 1789-1800.	1.7	43
105	Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 174714.	1.2	41
106	De Novo Design of Self-Assembled Hexapeptides as \hat{l}^2 -Amyloid (A \hat{l}^2) Peptide Inhibitors. ACS Chemical Neuroscience, 2014, 5, 972-981.	1.7	41
107	HP- \hat{l}^2 -cyclodextrin as an inhibitor of amyloid- \hat{l}^2 aggregation and toxicity. Physical Chemistry Chemical Physics, 2016, 18, 20476-20485.	1.3	41
108	Comparative Molecular Dynamics Study of $\hat{Al^2}$ Adsorption on the Self-Assembled Monolayers. Langmuir, 2010, 26, 3308-3316.	1.6	40

#	Article	IF	CITATIONS
109	Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model. PLoS ONE, 2018, 13, e0207777.	1.1	40
110	Alzheimer A $\hat{1}^2$ < sub> $1\hat{a}^3$ 42 < /sub> Monomer Adsorbed on the Self-Assembled Monolayers. Langmuir, 2010, 26, 12722-12732.	1.6	39
111	Molecular Understanding of A \hat{I}^2 -hIAPP Cross-Seeding Assemblies on Lipid Membranes. ACS Chemical Neuroscience, 2017, 8, 524-537.	1.7	39
112	HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington's epigenetic landscape. Bioinformatics, 2017, 33, i102-i109.	1.8	39
113	Fine-Tuning of Fluorinated Thieno[3,4-b]thiophene Copolymer for Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 4358-4363.	1.5	38
114	Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angewandte Chemie - International Edition, 2014, 53, 1590-1593.	7.2	38
115	Polymorphic cross-seeding amyloid assemblies of amyloid- \hat{l}^2 and human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2015, 17, 23245-23256.	1.3	38
116	Ac-LVFFARK-NH 2 conjugation to \hat{l}^2 -cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid \hat{l}^2 -protein fibrillogenesis and cytotoxicity. Biophysical Chemistry, 2018, 235, 40-47.	1.5	38
117	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	5.2	38
118	Structure by design: from single proteins and their building blocks to nanostructures. Trends in Biotechnology, 2006, 24, 449-454.	4.9	37
119	Nanostructure Design Using Protein Building Blocks Enhanced by Conformationally Constrained Synthetic Residuesâ€. Biochemistry, 2007, 46, 1205-1218.	1.2	37
120	Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Advances, 2013, 3, 19991.	1.7	37
121	ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis. BMC Genomics, 2015, 16, S1.	1.2	37
122	Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: the effect of pH and surface pre-corrosion. RSC Advances, 2015, 5, 95160-95170.	1.7	37
123	\hat{l}^2 (sub>2 (sub>-Microglobulin Amyloid Fragment Organization and Morphology and Its Comparison to A \hat{l}^2 Suggests That Amyloid Aggregation Pathways Are Sequence Specific. Biochemistry, 2008, 47, 2497-2509.	1.2	36
124	Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Physical Chemistry Chemical Physics, 2014, 16, 2368-2377.	1.3	36
125	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	2.8	36
126	Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene, 2021, 40, 2339-2354.	2.6	36

#	Article	IF	Citations
127	Molecular insights into the reversible formation of tau protein fibrils. Chemical Communications, 2013, 49, 3582.	2.2	34
128	Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. Journal of Physical Chemistry B, 2014, 118, 7026-7036.	1.2	34
129	Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously improving optical transparency, oxygen permeability, and antifouling properties. Journal of Materials Chemistry B, 2017, 5, 4595-4606.	2.9	34
130	Designing a Nanotube Using Naturally Occurring Protein Building Blocks. PLoS Computational Biology, 2006, 2, e42.	1.5	33
131	Heterogeneous Triangular Structures of Human Islet Amyloid Polypeptide (Amylin) with Internal Hydrophobic Cavity and External Wrapping Morphology Reveal the Polymorphic Nature of Amyloid Fibrils. Biomacromolecules, 2011, 12, 1781-1794.	2.6	33
132	Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid \hat{l}^2 -protein aggregation and cytotoxicity. Journal of Colloid and Interface Science, 2017, 505, 973-982.	5.0	33
133	Molecular Modeling of Two Distinct Triangular Oligomers in Amyloid \hat{l}^2 -protein. Journal of Physical Chemistry B, 2010, 114, 463-470.	1.2	32
134	Structural analysis of the novel influenza A (H7N9) viral Neuraminidase interactions with current approved neuraminidase inhibitors Oseltamivir, Zanamivir, and Peramivir in the presence of mutation R289K. BMC Bioinformatics, 2013, 14, S7.	1.2	32
135	SL ² MF: Predicting Synthetic Lethality in Human Cancers via Logistic Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 748-757.	1.9	32
136	Synthesis and Characterization of Ultralow Fouling Poly(<i>N</i> -acryloyl-glycinamide) Brushes. Langmuir, 2017, 33, 13964-13972.	1.6	31
137	KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers. Bioinformatics, 2021, 37, i418-i425.	1.8	31
138	Enhanced Performance of Polymer Solar Cells using PEDOT:PSS Doped with Fe ₃ O ₄ Magnetic Nanoparticles Aligned by an External Magnetostatic Field as an Anode Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13201-13208.	4.0	30
139	A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of selfâ€assembled poly(ethylene oxide) triblock copolymer surfaces. Journal of Biomedical Materials Research - Part A, 2010, 93A, 400-408.	2.1	29
140	Strong resistance of poly (ethylene glycol) based <scp>L</scp> â€tyrosine polyurethanes to protein adsorption and cell adhesion. Polymer International, 2012, 61, 616-621.	1.6	28
141	Mimicking the binding and unbinding of Fe3+ with transferrin using a single biomimetic nanochannel. Chemical Communications, 2013, 49, 9317.	2.2	28
142	Polymorphic Associations and Structures of the Cross-Seeding of Aβ _{1–42} and hIAPP _{1–37} Polypeptides. Journal of Chemical Information and Modeling, 2015, 55, 1628-1639.	2.5	28
143	Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Physical Chemistry Chemical Physics, 2015, 17, 10373-10382.	1.3	27
144	How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?. ACS Chemical Neuroscience, 2016, 7, 565-575.	1.7	27

#	Article	lF	CITATIONS
145	Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith. Journal of Chromatography A, 2015, 1389, 104-111.	1.8	26
146	The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 792-803.	1.9	25
147	Promotional effect of Ti doping on the ketonization of acetic acid over a CeO ₂ catalyst. RSC Advances, 2017, 7, 22017-22026.	1.7	25
148	Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS Omega, 2017, 2, 784-792.	1.6	25
149	Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Israel Journal of Chemistry, 2017, 57, 586-601.	1.0	25
150	Emerging deep learning methods for singleâ€cell RNAâ€seq data analysis. Quantitative Biology, 2019, 7, 247-254.	0.3	25
151	Graph contextualized attention network for predicting synthetic lethality in human cancers. Bioinformatics, 2021, 37, 2432-2440.	1.8	25
152	Branched NaYF ₄ :Yb, Er Up-Conversion Phosphors with Luminescent Properties for Anti-Counterfeiting Application. Science of Advanced Materials, 2017, 9, 2223-2233.	0.1	25
153	Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors. Nanoscale, 2013, 5, 12474.	2.8	24
154	In Silico Prediction of Synthetic Lethality by Meta-Analysis of Genetic Interactions, Functions, and Pathways in Yeast and Human Cancer. Cancer Informatics, 2014, 13s3, CIN.S14026.	0.9	24
155	Genome-wide analysis in Plasmodium falciparum reveals early and late phases of RNA polymerase II occupancy during the infectious cycle. BMC Genomics, 2014, 15, 959.	1.2	24
156	Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. Journal of Bioinformatics and Computational Biology, 2015, 13, 1541002.	0.3	24
157	Temperatureâ€Selective Dual Radical Generation from Alkyl Diiodide: Applications to Synthesis of Asymmetric CABC Multiâ€Block Copolymers and Their Unique Assembly Structures. Angewandte Chemie - International Edition, 2018, 57, 1552-1556.	7.2	24
158	Structural Determination of Aβ25–35 Micelles by Molecular Dynamics Simulations. Biophysical Journal, 2010, 99, 666-674.	0.2	23
159	Detecting sequence polymorphisms associated with meiotic recombination hotspots in the human genome. Genome Biology, 2010, 11, R103.	3.8	23
160	Graphene cryogel-based counter electrode materials freeze-dried using different solution media for dye-sensitized solar cells. Chemical Engineering Journal, 2017, 319, 155-162.	6.6	23
161	Halogen bonding regulated functional nanomaterials. Nanoscale Advances, 2021, 3, 6342-6357.	2.2	23
162	Efficient selection of unique and popular oligos for large EST databases. Bioinformatics, 2004, 20, 2101-2112.	1.8	22

#	Article	IF	CITATIONS
163	Syn-Lethality: An Integrative Knowledge Base of Synthetic Lethality towards Discovery of Selective Anticancer Therapies. BioMed Research International, 2014, 2014, 1-7.	0.9	22
164	Carbon monoxide in controlling the surface formation of Group VIII metal nanoparticles. Chemical Communications, 2014, 50, 14013-14016.	2.2	22
165	NetLand: quantitative modeling and visualization of Waddington's epigenetic landscape using probabilistic potential. Bioinformatics, 2017, 33, 1583-1585.	1.8	22
166	Inferring Gene Regulatory Networks from Time-Series Expressions Using Random Forests Ensemble. Lecture Notes in Computer Science, 2013, , 13-22.	1.0	21
167	Teasing Apart Translational and Transcriptional Components of Stochastic Variations in Eukaryotic Gene Expression. PLoS Computational Biology, 2012, 8, e1002644.	1.5	21
168	Integrating recyclable polymers into thermoelectric devices for green electronics. Journal of Materials Chemistry A, 2022, 10, 19787-19796.	5.2	21
169	Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids. Physical Biology, 2006, 3, S54-S62.	0.8	20
170	Cross-Sequence Interactions between Human and Rat Islet Amyloid Polypeptides. Langmuir, 2014, 30, 5193-5201.	1.6	20
171	Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications. Journal of Materials Chemistry A, 2016, 4, 12730-12738.	5.2	20
172	Flexible elemental thermoelectrics with ultra-high power density. Materials Today Energy, 2022, 25, 100964.	2.5	20
173	Insights into the adsorption of simple benzene derivatives on carbon nanotubes. RSC Advances, 2014, 4, 58036-58046.	1.7	19
174	Hemocompatible biomaterials of zwitterionic sulfobetaine hydrogels regulated with pH-responsive DMAEMA random sequences. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 65-74.	1.8	19
175	Changing the Charge Distribution of \hat{l}^2 -Helical-Based Nanostructures Can Provide the Conditions for Charge Transfer. Biophysical Journal, 2007, 93, 245-253.	0.2	18
176	Identifying protein complexes from heterogeneous biological data. Proteins: Structure, Function and Bioinformatics, 2013, 81, 2023-2033.	1.5	18
177	A computational study of self-assembled hexapeptide inhibitors against amyloid- \hat{l}^2 (A \hat{l}^2) aggregation. Physical Chemistry Chemical Physics, 2016, 19, 155-166.	1.3	18
178	Molecular dynamics simulations of Alzheimer Abeta40 elongation and lateral association. Frontiers in Bioscience - Landmark, 2008, Volume, 3919.	3.0	17
179	Atomic-Scale Simulations Confirm that Soluble \hat{l}^2 -Sheet-Rich Peptide Self-Assemblies Provide Amyloid Mimics Presenting Similar Conformational Properties. Biophysical Journal, 2010, 98, 27-36.	0.2	17
180	Ca ²⁺ Interacts with Glu-22 of Aβ(1–42) and Phospholipid Bilayers to Accelerate the Aβ(1–42) Aggregation Below the Critical Micelle Concentration. Biochemistry, 2015, 54, 6323-6332.	1.2	17

#	Article	IF	Citations
181	Efficient polymer solar cells fabricated from solvent processing additive solution. Journal of Materials Chemistry C, 2015, 3, 26-32.	2.7	17
182	Mutational Analysis and Allosteric Effects in the HIV-1 Capsid Protein Carboxyl-Terminal Dimerization Domain. Biomacromolecules, 2009, 10, 390-399.	2.6	16
183	An Index for Characterization of Natural and Non-Natural Amino Acids for Peptidomimetics. PLoS ONE, 2013, 8, e67844.	1.1	16
184	Single-cell gene expression analysis reveals \hat{l}^2 -cell dysfunction and deficit mechanisms in type 2 diabetes. BMC Bioinformatics, 2018, 19, 515.	1.2	16
185	The Translational Application of Hydrogel for Organoid Technology: Challenges and Future Perspectives. Macromolecular Bioscience, 2021, 21, e2100191.	2.1	16
186	SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	16
187	Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid- \hat{l}^2 protein. Frontiers of Chemical Science and Engineering, 2014, 8, 433-444.	2.3	15
188	Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs. Frontiers of Chemical Science and Engineering, 2014, 8, 498-510.	2.3	15
189	Human PRPF40B regulates hundreds of alternative splicing targets and represses a hypoxia expression signature. Rna, 2019, 25, 905-920.	1.6	15
190	Group-sparse Modeling Drug-kinase Networks for Predicting Combinatorial Drug Sensitivity in Cancer Cells. Current Bioinformatics, 2018, 13, 437-443.	0.7	15
191	Benchmarking Human Protein Complexes to Investigate Drug-Related Systems and Evaluate Predicted Protein Complexes. PLoS ONE, 2013, 8, e53197.	1.1	14
192	Improvement of performance of a Au–Cu/AC catalyst using thiol for acetylene hydrochlorination reaction. RSC Advances, 2016, 6, 3806-3814.	1.7	13
193	Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer's disease. BMC Systems Biology, 2018, 12, 10.	3.0	13
194	Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data. Methods, 2021, 189, 65-73.	1.9	13
195	Cell multipole method for molecular simulations in bulk and confined systems. Journal of Chemical Physics, 2003, 118, 5347-5355.	1.2	12
196	PLW: Probabilistic Local Walks for detecting protein complexes from protein interaction networks. BMC Genomics, 2013, 14, S15.	1.2	12
197	Highly sensitive inference of time-delayed gene regulation by network deconvolution. BMC Systems Biology, 2014, 8, S6.	3.0	12
198	Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data. Scientific Reports, 2016, 6, 35652.	1.6	12

#	Article	IF	CITATIONS
199	Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation. Physical Chemistry Chemical Physics, 2016, 18, 17380-17388.	1.3	12
200	Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine Hydrochloride as an Amyloid- \hat{l}^2 Aggregation Inhibitor. ACS Omega, 2017, 2, 243-250.	1.6	12
201	Computational identification of physicochemical signatures for host tropism of influenza A virus. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840023.	0.3	12
202	Boolean network modeling of \hat{l}^2 -cell apoptosis and insulin resistance in type 2 diabetes mellitus. BMC Systems Biology, 2019, 13, 36.	3.0	12
203	Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses. BMC Medical Genomics, 2016, 9, 69.	0.7	11
204	Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane. Scientific Reports, 2016, 6, 33340.	1.6	11
205	Temperatureâ€Selective Dual Radical Generation from Alkyl Diiodide: Applications to Synthesis of Asymmetric CABC Multiâ€Block Copolymers and Their Unique Assembly Structures. Angewandte Chemie, 2018, 130, 1568-1572.	1.6	11
206	Stability of Tubular Structures Based on β-Helical Proteins:  Self-Assembled versus Polymerized Nanoconstructs and Wild-Type versus Mutated Sequences. Biomacromolecules, 2007, 8, 3135-3146.	2.6	10
207	Reliable and Fast Estimation of Recombination Rates by Convergence Diagnosis and Parallel Markov Chain Monte Carlo. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 63-72.	1.9	10
208	Design of hemocompatible poly(DMAEMAâ€ <i>co</i> i>â€PEGMA) hydrogels for controlled release of insulin. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
209	A quantitative sequence–aggregation relationship predictor applied as identification of self-assembled hexapeptides. Chemometrics and Intelligent Laboratory Systems, 2015, 145, 7-16.	1.8	10
210	Isatin-phenylhydrazone dyes and boron complexes with large Stokes shifts: synthesis and solid-state fluorescence characteristics. Tetrahedron, 2015, 71, 3802-3809.	1.0	10
211	Mathematical modelling of core regulatory mechanism in p53 protein that activates apoptotic switch. Journal of Theoretical Biology, 2019, 462, 134-147.	0.8	10
212	Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlation and Sparse Regression. Lecture Notes in Computer Science, 2013, , 64-75.	1.0	10
213	Theoretical study of the interaction pattern and the binding affinity between procaine and DNA bases. Computational and Theoretical Chemistry, 2010, 939, 44-52.	1.5	9
214	Differences in Meiotic Recombination Rates in Childhood Acute Lymphoblastic Leukemia at an MHC Class II Hotspot Close to Disease Associated Haplotypes. PLoS ONE, 2014, 9, e100480.	1.1	9
215	A context-free encoding scheme of protein sequences for predicting antigenicity of diverse influenza A viruses. BMC Genomics, 2018, 19, 936.	1.2	9
216	Temperatureâ€Directed Micellar Morphological Transformation Using CABCâ€Block Copolymers and Its Applications in Encapsulation and Hidden Segment. Angewandte Chemie - International Edition, 2020, 59, 1941-1949.	7.2	9

#	Article	IF	CITATIONS
217	Organocatalyzed Living Radical Polymerization of Itaconates and Selfâ€Assemblies of Rodâ^'Coil Block Copolymers. Macromolecular Rapid Communications, 2020, 41, e2000075.	2.0	9
218	Discovery of Repetitive Patterns in DNA with Accurate Boundaries. , 0, , .		8
219	An NMR investigation on the phase structure and molecular mobility of the novel exfoliated polyethylene/palygorskite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1363-1371.	2.4	8
220	Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses. BMC Genomics, 2018, 19, 88.	1.2	8
221	Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods in Molecular Biology, 2018, 1777, 429-447.	0.4	8
222	A Monte Carlo method for in silico modeling and visualization of Waddington's epigenetic landscape with intermediate details. BioSystems, 2020, 198, 104275.	0.9	8
223	Synthesis of ABC Miktoarm Star Copolymers via Organocatalyzed Living Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e1900623.	2.0	8
224	PIKE-R2P: Protein–protein interaction network-based knowledge embedding with graph neural network for single-cell RNA to protein prediction. BMC Bioinformatics, 2021, 22, 139.	1.2	8
225	Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity. BMC Systems Biology, 2015, 9, S4.	3.0	7
226	Hemocompatible interface control via thermal-activated bio-inspired surface PEGylation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 409-420.	1.8	7
227	Systematic study on evolution of self-assembly morphologies of CABC tetrablock terpolymers with varied segment lengths. Polymer Chemistry, 2020, 11, 3987-3993.	1.9	7
228	Integration of Epigenetic Data in Bayesian Network Modeling of Gene Regulatory Network. Lecture Notes in Computer Science, 2011, , 87-96.	1.0	7
229	DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method. Frontiers in Genetics, $0,13,.$	1.1	7
230	Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots. Proteome Science, 2012, 10, S11.	0.7	6
231	LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms. BMC Bioinformatics, 2014, 15, 48.	1.2	6
232	Identification of Potential Critical Virulent Sites Based on Hemagglutinin of Influenza a Virus in Past Pandemic Strains., 2017,,.		6
233	Whole Genome Sequencing Analysis. , 2019, , 176-183.		6
234	Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 516-525.	1.9	6

#	Article	IF	CITATIONS
235	Meta-analysis of Genomic and Proteomic Features to Predict Synthetic Lethality of Yeast and Human Cancer. , $2013, , .$		5
236	Deciphering histone code of transcriptional regulation in malaria parasites by large-scale data mining. Computational Biology and Chemistry, 2014, 50, 3-10.	1.1	5
237	Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape. PLoS ONE, 2018, 13, e0197838.	1.1	5
238	Integrating epigenetic prior in dynamic Bayesian network for gene regulatory network inference. , 2013, , .		4
239	Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction. BMC Bioinformatics, 2021, 22, 419.	1.2	4
240	Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network. , 2021, 2021, 1731-1734.		4
241	Prediction of Trans-regulators of Recombination Hotspots in Mouse Genome., 2011, , .		3
242	Globalized bipartite local model for drug-target interaction prediction. , 2012, , .		3
243	Feasibility of Whole RNA Sequencing from Single-Cell mRNA Amplification. Genetics Research International, 2013, 2013, 1-8.	2.0	3
244	Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation. BMC Systems Biology, 2016, 10, 123.	3.0	3
245	Integration of genomic and epigenomic features to predict meiotic recombination hotspots in human and mouse. , 2012 , , .		2
246	Extracting rate changes in transcriptional regulation from MEDLINE abstracts. BMC Bioinformatics, 2014, 15, S4.	1.2	2
247	IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. BMC Bioinformatics, 2014, 15, S9.	1.2	2
248	PEGylated Poly(3-hydroxybutyrate) Scaffold for Hydration-Driven Cell Infiltration, Neo-Tissue Ingrowth, and Osteogenic Potential. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 865-878.	1.8	2
249	TAPESTRY., 2016,,.		2
250	Generalized logical model based on network topology to capture the dynamical trends of cellular signaling pathways. BMC Systems Biology, 2016, 10, 7.	3.0	2
251	A polynomial based model for cell fate prediction in human diseases. BMC Systems Biology, 2017, 11, 126.	3.0	2
252	LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data. BMC Medical Genomics, 2018, 11, 27.	0.7	2

#	Article	IF	CITATIONS
253	A Therapeutic Targeting Identification from Microarray Data and Quantitative Network Analysis. Open Access Journal of Science and Technology, 2015, 3, .	0.2	2
254	Gene Expression and Pathway Analysis of Quiescent CD8+ T Cells from Liver Cancer, Liver Sinusoid and Peripheral Blood - Study on Toxicogenomics and Prevention Targeting. , 2011, , .		1
255	NetPipe. , 2012, , .		1
256	Syn-Lethality: An integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies. , $2013, , .$		1
257	Data-driven prediction of cancer cell fates with a nonlinear model of signaling pathways. , 2014, , .		1
258	A Highly Selective Fluorescent Indicator for Copper Based on a Boron Complex. Journal of Chemical Research, 2015, 39, 36-40.	0.6	1
259	An Investigation on the Fundamental Interaction between Abeta Peptides and the AT-Rich DNA. Journal of Physical Chemistry B, 2015, 119, 8247-8259.	1.2	1
260	An Encoding Scheme Capturing Generic Priors and Properties of Amino Acids Improves Protein Classification. IEEE Access, 2019, 7, 7348-7356.	2.6	1
261	Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast. BMC Systems Biology, 2014, 8, 107.	3.0	0
262	INGOT: Towards network-driven in silico combination therapy., 2014,,.		0
263	Introduction to the CSBio2014 special issue. Journal of Bioinformatics and Computational Biology, 2015, 13, 1502002.	0.3	0
264	Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects. PLoS ONE, 2016, 11, e0165049.	1.1	0
265	Predictive Modeling of Drug Effects on Signaling Pathways in Diverse Cancer Cell Lines. , 2016, , .		0
266	Phylogenetic Tree based Method for Uncovering Co-mutational Site-pairs in Influenza Viruses. , 2017, , .		0
267	TROVE: a user-friendly tool for visualizing and analyzing cancer hallmarks in signaling networks. Bioinformatics, 2018, 34, 314-316.	1.8	0
268	Genome Analysis – Identification of Genes Involved in Host-Pathogen Protein-Protein Interaction Networks. , 2019, , 410-424.		0
269	Topic Judgment Helps Question Similarity Prediction in Medical FAQ Dialogue Systems. , 2019, , .		0
270	Guest Editorial for the 29th International Conference on Genome Informatics (GIW 2018). IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 726-727.	1.9	O

#	Article	IF	CITATIONS
271	CUDAGRN: Parallel Speedup of Inferring Large Gene Regulatory Networks from Expression Data Using Random Forest. Lecture Notes in Computer Science, 2014, , 85-97.	1.0	O
272	A Rigorous Analysis of the Pattern of Intron Conservation Supports the Coelomata Clade of Animals. Lecture Notes in Computer Science, 2007, , 177-191.	1.0	0