
John W C Dunlop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges in computational fluid dynamics applications for bone tissue engineering. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210607.	2.1	6
2	Effects of moisture and cellulose fibril angle on the tensile properties of native single Norway spruce wood fibres. Wood Science and Technology, 2021, 55, 1305-1318.	3.2	8
3	Advanced materials design based on waste wood and bark. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200345.	3.4	9
4	Rubbing Powders: Direct Spectroscopic Observation of Triboinduced Oxygen Radical Formation in MgO Nanocube Ensembles. Journal of Physical Chemistry C, 2021, 125, 22239-22248.	3.1	2
5	Surface tension determines tissue shape and growth kinetics. Science Advances, 2019, 5, eaav9394.	10.3	80
6	Organic Moleculeâ€Ðriven Polymeric Actuators. Macromolecular Rapid Communications, 2019, 40, e1800896.	3.9	17
7	Protecting Offspring Against Fire: Lessons From Banksia Seed Pods. Frontiers in Plant Science, 2019, 10, 283.	3.6	16
8	Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts. Science Advances, 2018, 4, eaao4881.	10.3	102
9	Comparative in situ analysis reveals the dynamic nature of sclerenchyma cell walls of the fern Asplenium rutifolium. Annals of Botany, 2018, 121, 345-358.	2.9	6
10	Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth. Advanced Materials, 2017, 29, 1605103.	21.0	51
11	Mechanical behavior of idealized, stingray-skeleton-inspired tiled composites as a function of geometry and material properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 86-101.	3.1	15
12	Materials Nanoarchitecturing via Cationâ€Mediated Protein Assembly: Making Limpet Teeth without Mineral. Advanced Materials, 2017, 29, 1701171.	21.0	27
13	Flexible and Actuating Nanoporous Poly(Ionic Liquid)–Paper-Based Hybrid Membranes. ACS Applied Materials & Interfaces, 2017, 9, 15148-15155.	8.0	44
14	The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration. Advanced Healthcare Materials, 2017, 6, 1601244.	7.6	34
15	Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Advanced Science, 2017, 4, 1600347.	11.2	212
16	Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia, 2017, 60, 64-80.	8.3	62
17	Curvature-controlled defect dynamics in active systems. Physical Review E, 2017, 95, 062609.	2.1	12
18	Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces. Ultrasonics Sonochemistry, 2017, 36, 146-154.	8.2	17

2

#	Article	IF	CITATIONS
19	Programmable Actuation of Porous Poly(Ionic Liquid) Membranes by Aligned Carbon Nanotubes. Advanced Materials Interfaces, 2017, 4, 1600768.	3.7	35
20	Relation between the Macroscopic Pattern of Elephant Ivory and Its Three-Dimensional Micro-Tubular Network. PLoS ONE, 2017, 12, e0166671.	2.5	20
21	Ultrasonically Produced Porous Sponge Layer on Titanium to Guide Cell Behavior. Advanced Engineering Materials, 2016, 18, 476-483.	3.5	18
22	Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during <i>in vitro</i> tissue growth. Journal of the Royal Society Interface, 2016, 13, 20160136.	3.4	37
23	Holeâ€Programmed Superfast Multistep Folding of Hydrogel Bilayers. Advanced Functional Materials, 2016, 26, 7733-7739.	14.9	77
24	Honeycomb Actuators Inspired by the Unfolding of Ice Plant Seed Capsules. PLoS ONE, 2016, 11, e0163506.	2.5	25
25	The Geometric Design and Fabrication of Actuating Cellular Structures. Advanced Materials Interfaces, 2015, 2, 1500011.	3.7	22
26	Tissue growth controlled by geometric boundary conditions: a simple model recapitulating aspects of callus formation and bone healing. Journal of the Royal Society Interface, 2015, 12, 20150108.	3.4	3
27	Feeding in billfishes: inferring the role of the rostrum from a biomechanical standpoint. Journal of Experimental Biology, 2015, 218, 824-836.	1.7	29
28	Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth inAvitro. Biomaterials, 2015, 60, 121-129.	11.4	14
29	Sensing Solvents with Ultrasensitive Porous Poly(ionic liquid) Actuators. Advanced Materials, 2015, 27, 2913-2917.	21.0	141
30	Making a tooth mimic. Nature Materials, 2015, 14, 1082-1083.	27.5	11
31	Pressurized honeycombs as soft-actuators: a theoretical study. Journal of the Royal Society Interface, 2014, 11, 20140458.	3.4	30
32	An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nature Communications, 2014, 5, 4293.	12.8	446
33	Hydro-actuation of ice plant seed capsules powered by water uptake. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 169-182.	0.9	12
34	Influence of Magnetic Fields on Magneto-Aerotaxis. PLoS ONE, 2014, 9, e101150.	2.5	49
35	Tissue growth into threeâ€dimensional composite scaffolds with controlled microâ€features and nanotopographical surfaces. Journal of Biomedical Materials Research - Part A, 2013, 101, 2796-2807.	4.0	44
36	A three-dimensional model for tissue deposition on complex surfaces. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 1056-1070.	1.6	62

#	Article	IF	CITATIONS
37	All but diamonds – Biological materials are not forever. Acta Materialia, 2013, 61, 880-889.	7.9	20
38	Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 2013, 2, 186-194.	7.6	264
39	Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomaterialia, 2013, 9, 5531-5543.	8.3	59
40	Experimental micromechanical characterisation of wood cell walls. Wood Science and Technology, 2013, 47, 163-182.	3.2	113
41	Hierarchical Multi‣tep Folding of Polymer Bilayers. Advanced Functional Materials, 2013, 23, 2295-2300.	14.9	144
42	Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 366-382.	3.1	83
43	Multilevel architectures in natural materials. Scripta Materialia, 2013, 68, 8-12.	5.2	63
44	Polarized Raman Anisotropic Response of Collagen in Tendon: Towards 3D Orientation Mapping of Collagen in Tissues. PLoS ONE, 2013, 8, e63518.	2.5	61
45	Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn. Journal of the Royal Society Interface, 2012, 9, 640-647.	3.4	92
46	Quantitative approach to the stochastics of bone remodeling. Europhysics Letters, 2012, 97, 28009.	2.0	4
47	Finite Element Modeling of the Cyclic Wetting Mechanism in the Active Part of Wheat Awns. Biointerphases, 2012, 7, 42.	1.6	5
48	Shape-Programmed Folding of Stimuli-Responsive Polymer Bilayers. ACS Nano, 2012, 6, 3925-3934.	14.6	236
49	How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth. PLoS ONE, 2012, 7, e36336.	2.5	169
50	Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice. PLoS ONE, 2012, 7, e47338.	2.5	50
51	In Vitro "Wound―Healing: Experimentally Based Phenomenological Modeling. Advanced Engineering Materials, 2012, 14, B76.	3.5	7
52	The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter, 2011, 7, 9549.	2.7	65
53	Observations of Multiscale, Stress-Induced Changes of Collagen Orientation in Tendon by Polarized Raman Spectroscopy. Biomacromolecules, 2011, 12, 3989-3996.	5.4	83
54	Origami-like unfolding of hydro-actuated ice plant seed capsules. Nature Communications, 2011, 2, 337.	12.8	231

#	Article	IF	CITATIONS
55	Cooperation of length scales and orientations in the deformation of bovine bone. Acta Biomaterialia, 2011, 7, 2943-2951.	8.3	26
56	Artful interfaces within biological materials. Materials Today, 2011, 14, 70-78.	14.2	204
57	Characterization of the Spatial Arrangement of Secondary Osteons in the Diaphysis of Equine and Canine Long Bones. Anatomical Record, 2011, 294, 1093-1102.	1.4	9
58	Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 879-887.	3.1	14
59	An excursion into the design space of biomimetic architectured biphasic actuators. International Journal of Materials Research, 2011, 102, 607-612.	0.3	30
60	Micromechanics of Cell Walls. Signaling and Communication in Plants, 2011, , 27-52.	0.7	22
61	Systematic Structural Coordination Chemistry of <i>p</i> â€ <i>tert</i> â€Butyltetrathiacalix[4]arene: Main Group Metal Complexes Other Than Those of Group 1. European Journal of Inorganic Chemistry, 2010, 2010, 2089-2105.	2.0	24
62	Systematic Structural Coordination Chemistry of p-tert-Butyltetrathiacalix[4]arene: Further Complexes of Transition-Metal Ions. European Journal of Inorganic Chemistry, 2010, 2010, 2106-02126.	2.0	82
63	A theoretical model for tissue growth in confined geometries. Journal of the Mechanics and Physics of Solids, 2010, 58, 1073-1087.	4.8	42
64	Biological Composites. Annual Review of Materials Research, 2010, 40, 1-24.	9.3	381
65	Two stages in three-dimensional <i>in vitro</i> growth of tissue generated by osteoblastlike cells. Biointerphases, 2010, 5, 45-52.	1.6	52
66	Effect of minimal defects in periodic cellular solids. Philosophical Magazine, 2010, 90, 1807-1818.	1.6	16
67	Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone, 2010, 47, 392-399.	2.9	131
68	Pectin May Hinder the Unfolding of Xyloglucan Chains during Cell Deformation: Implications of the Mechanical Performance of Arabidopsis Hypocotyls with Pectin Alterations. Molecular Plant, 2009, 2, 990-999.	8.3	48
69	New Suggestions for the Mechanical Control of Bone Remodeling. Calcified Tissue International, 2009, 85, 45-54.	3.1	50
70	Pore Structure and Fluid Sorption in Ordered Mesoporous Silica. II. Modeling. Journal of Physical Chemistry C, 2009, 113, 15211-15217.	3.1	28
71	Architectured Structural Materials: A Parallel Between Nature and Engineering. Materials Research Society Symposia Proceedings, 2009, 1188, 209.	0.1	7
72	Stress generation in the tension wood of poplar is based on the lateral swelling power of the Gâ€layer. Plant Journal, 2008, 56, 531-538.	5.7	103

#	Article	IF	CITATIONS
73	The effect of geometry on three-dimensional tissue growth. Journal of the Royal Society Interface, 2008, 5, 1173-1180.	3.4	413
74	Dislocation density-based modelling of plastic deformation of Zircaloy-4. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 443, 77-86.	5.6	48
75	Modelling isothermal and non-isothermal recrystallisation kinetics: Application to Zircaloy-4. Journal of Nuclear Materials, 2007, 366, 178-186.	2.7	29
76	Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times. Acta Materialia, 2006, 54, 3983-3990.	7.9	98
77	A Coupled Recovery/Recrystallisation Model for Zirconium Alloys. Influence of Hydrogen. Materials Science Forum, 2004, 467-470, 629-634.	0.3	2
78	Subtleties with Sulfur: Calixarenes as Uranophiles. Angewandte Chemie - International Edition, 2001, 40, 721-723.	13.8	44
79	Effect of Low-Temperature Recovery Treatments on Subsequent Recrystallization in Al-2.5%Mg. Materials Science Forum, 0, 550, 381-386.	0.3	12