Dietmar Schmitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493667/publications.pdf

Version: 2024-02-01

174 12,591 54 103 g-index

191 191 191 191 15317

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Microcircuits for spatial coding in the medial entorhinal cortex. Physiological Reviews, 2022, 102, 653-688.	13.1	36
2	<i>In vitro</i> and <i>in vivo</i> antiâ€epileptic efficacy of eslicarbazepine acetate in a mouse model of <i>KCNQ2</i> â€related selfâ€limited epilepsy. British Journal of Pharmacology, 2022, 179, 84-102.	2.7	6
3	GABAergic Interneurons with Nonlinear Dendrites: From Neuronal Computations to Memory Engrams. Neuroscience, 2022, 489, 34-43.	1.1	4
4	Automated Detection and Localization of Synaptic Vesicles in Electron Microscopy Images. ENeuro, 2022, 9, ENEURO.0400-20.2021.	0.9	5
5	SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies. Science, 2022, 375, 782-787.	6.0	60
6	The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. PLoS Biology, 2022, 20, e3001503.	2.6	6
7	Brain-wide interactions during hippocampal sharp wave ripples. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200931119.	3.3	34
8	Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline. JAMA Network Open, 2022, 5, e2213875.	2.8	17
9	Correction: Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial. Alzheimer's Research and Therapy, 2022, 14, .	3.0	1
10	Optogenetics at the presynapse. Nature Neuroscience, 2022, 25, 984-998.	7.1	37
11	Temperature elevations can induce switches to homoclinic action potentials that alter neural encoding and synchronization. Nature Communications, 2022, 13, .	5 . 8	7
12	Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron, 2021, 109, 299-313.e9.	3.8	91
13	SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity. Journal of Neurochemistry, 2021, 156, 324-336.	2.1	14
14	Parvalbumin Interneurons Are Differentially Connected to Principal Cells in Inhibitory Feedback Microcircuits along the Dorsoventral Axis of the Medial Entorhinal Cortex. ENeuro, 2021, 8, ENEURO.0354-20.2020.	0.9	10
15	Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex. ELife, $2021,10,10$	2.8	13
16	Subiculum as a generator of sharp wave-ripples in the rodent hippocampus. Cell Reports, 2021, 35, 109021.	2.9	21
17	Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron, 2021, 109, 1621-1635.e8.	3.8	81
18	Recruitment of release sites underlies chemical presynaptic potentiation at hippocampal mossy fiber boutons. PLoS Biology, 2021, 19, e3001149.	2.6	18

#	Article	IF	CITATIONS
19	A CRISPR-Cas9 \hat{a} eeengineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
20	OUP accepted manuscript. Cerebral Cortex, 2021, 32, 76-92.	1.6	1
21	Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification. Frontiers in Cell and Developmental Biology, 2021, 9, 716919.	1.8	6
22	Uncoupling the Excitatory Amino Acid Transporter 2 From Its C-Terminal Interactome Restores Synaptic Glutamate Clearance at Corticostriatal Synapses and Alleviates Mutant Huntingtin-Induced Hypokinesia. Frontiers in Cellular Neuroscience, 2021, 15, 792652.	1.8	7
23	Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. Journal of Experimental Medicine, 2021, 218, .	4.2	19
24	Could electrical coupling contribute to the formation of cell assemblies?. Reviews in the Neurosciences, 2020, 31, 121-141.	1.4	14
25	Human Cerebrospinal Fluid Monoclonal LGI1 Autoantibodies Increase Neuronal Excitability. Annals of Neurology, 2020, 87, 405-418.	2.8	72
26	Species-specific differences in synaptic transmission and plasticity. Scientific Reports, 2020, 10, 16557.	1.6	10
27	Initiating a new national epilepsy surgery program: Experiences gathered in Georgia. Epilepsy and Behavior, 2020, 111, 107259.	0.9	2
28	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	13.5	305
29	Generation of Sharp Wave-Ripple Events by Disinhibition. Journal of Neuroscience, 2020, 40, 7811-7836.	1.7	25
30	Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Frontiers in Systems Neuroscience, 2020, 14, 22.	1.2	19
31	Loss of Piccolo Function in Rats Induces Cerebellar Network Dysfunction and Pontocerebellar Hypoplasia Type 3-like Phenotypes. Journal of Neuroscience, 2020, 40, 2943-2959.	1.7	12
32	Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nature Communications, 2020, 11, 1947.	5.8	73
33	Layer 3 Pyramidal Cells in the Medial Entorhinal Cortex Orchestrate Up-Down States and Entrain the Deep Layers Differentially. Cell Reports, 2020, 33, 108470.	2.9	12
34	Circuit-Specific Dendritic Development in the Piriform Cortex. ENeuro, 2020, 7, ENEURO.0083-20.2020.	0.9	3
35	Human gestational <i>N</i> à€methylâ€ <scp>d</scp> â€aspartate receptor autoantibodies impair neonatal murine brain function. Annals of Neurology, 2019, 86, 656-670.	2.8	51
36	Electrophysiological and Molecular Characterization of the Parasubiculum. Journal of Neuroscience, 2019, 39, 8860-8876.	1.7	6

3

#	Article	IF	CITATIONS
37	The cell adhesion protein CAR is a negative regulator of synaptic transmission. Scientific Reports, 2019, 9, 6768.	1.6	17
38	Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial. Alzheimer's Research and Therapy, 2019, 11, 36.	3.0	74
39	Single Synapse Indicators of Impaired Glutamate Clearance Derived from Fast iGlu <i>_{u< sub>}</i> Inaging of Cortical Afferents in the Striatum of Normal and Huntington (Q175) Mice. Journal of Neuroscience, 2019, 39, 3970-3982.	1.7	26
40	Estrus-Cycle Regulation of Cortical Inhibition. Current Biology, 2019, 29, 605-615.e6.	1.8	63
41	Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications. Reviews in the Neurosciences, 2019, 31, 101-119.	1.4	12
42	Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Scientific Reports, 2019, 9, 19616.	1.6	33
43	Calcium-Independent Exo-endocytosis Coupling at Small Central Synapses. Cell Reports, 2019, 29, 3767-3774.e3.	2.9	15
44	Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Nature Communications, 2019, 10, 217.	5.8	56
45	A Cellular Mechanism Underlying Enhanced Capability for Complex Olfactory Discrimination Learning. ENeuro, 2019, 6, ENEURO.0198-18.2019.	0.9	10
46	RIM-BP2 primes synaptic vesicles via recruitment of Munc $13-1$ at hippocampal mossy fiber synapses. ELife, 2019, 8, .	2.8	46
47	Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators. Journal of Neuroscience, 2018, 38, 3124-3146.	1.7	36
48	SORCS 1 and SORCS 3 control energy balance and or exigenic peptide production. EMBO Reports, 2018, 19, .	2.0	36
49	Potassium channel-based optogenetic silencing. Nature Communications, 2018, 9, 4611.	5.8	71
50	The effect of spermidine on memory performance in older adults at risk for dementia: A randomized controlled trial. Cortex, 2018, 109, 181-188.	1.1	98
51	VGLUT2 Functions as a Differential Marker for Hippocampal Output Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 337.	1.8	26
52	Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons. Neuropharmacology, 2018, 139, 217-225.	2.0	34
53	Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function. Frontiers in Cellular Neuroscience, 2018, 12, 109.	1.8	9
54	Routes to, from and within the subiculum. Cell and Tissue Research, 2018, 373, 557-563.	1.5	29

#	Article	IF	Citations
55	Involvement of Mossy Cells in Sharp Wave-Ripple Activity InÂVitro. Cell Reports, 2018, 23, 2541-2549.	2.9	13
56	Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7 ^{–/–} Mice. ENeuro, 2018, 5, ENEURO.0398-17.2018.	0.9	19
57	Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin. Scientific Reports, 2017, 7, 42652.	1.6	13
58	Excitatory Microcircuits within Superficial Layers of the Medial Entorhinal Cortex. Cell Reports, 2017, 19, 1110-1116.	2.9	59
59	Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron, 2017, 96, 572-603.	3.8	274
60	Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology, 2017, 112, 104-112.	2.0	56
61	SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales. Frontiers in Neuroinformatics, 2017, 11, 44.	1.3	15
62	Early Cortical Changes in Gamma Oscillations in Alzheimer's Disease. Frontiers in Systems Neuroscience, 2016, 10, 83.	1.2	43
63	Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus. Neuron, 2016, 90, 795-809.	3.8	238
64	RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11615-11620.	3.3	86
65	Human cerebrospinal fluid monoclonal $\langle i \rangle N \langle j \rangle$ methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain, 2016, 139, 2641-2652.	3.7	223
66	Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation. Journal of Biological Chemistry, 2016, 291, 9105-9118.	1.6	26
67	Functional Architecture of the Rat Parasubiculum. Journal of Neuroscience, 2016, 36, 2289-2301.	1.7	54
68	Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiological Reviews, 2016, 96, 647-693.	13.1	96
69	Cell-specific synaptic plasticity induced by network oscillations. ELife, 2016, 5, .	2.8	35
70	$\hat{A^2}$ 42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid- \hat{I}^2 42 species and protects synaptic structure and function. Scientific Reports, 2015, 5, 15410.	1.6	23
71	State-dependencies of learning across brain scales. Frontiers in Computational Neuroscience, 2015, 9, 1.	1.2	104
72	Serotonin Attenuates Feedback Excitation onto O-LM Interneurons. Cerebral Cortex, 2015, 25, 4572-4583.	1.6	14

#	Article	IF	Citations
73	Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. Journal of Neurophysiology, 2015, 114, 2404-2417.	0.9	31
74	KCNQ5 K+ channels control hippocampal synaptic inhibition and fast network oscillations. Nature Communications, 2015, 6, 6254.	5.8	56
75	Functional Diversity of Subicular Principal Cells during Hippocampal Ripples. Journal of Neuroscience, 2015, 35, 13608-13618.	1.7	63
76	Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex. Journal of Neuroscience, 2015, 35, 12346-12354.	1.7	40
77	Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 2015, 18, 1845-1852.	7.1	113
78	Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics. PLoS Biology, 2015, 13, e1002181.	2.6	48
79	Retrograde Signaling Causes Excitement. Neuron, 2014, 81, 717-719.	3.8	1
80	CARbon Dloxide for the treatment of Febrile seizures: rationale, feasibility, and design of the CARDIF-study. Journal of Translational Medicine, 2013, 11, 157.	1.8	16
81	Inhibitory Gradient along the Dorsoventral Axis in the Medial Entorhinal Cortex. Neuron, 2013, 79, 1197-1207.	3.8	79
82	Role of RIM1 \hat{l}_{\pm} in short- and long-term synaptic plasticity at cerebellar parallel fibres. Nature Communications, 2013, 4, 2392.	5.8	27
83	A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices. Journal of Neuroscience Methods, 2013, 212, 222-227.	1.3	8
84	Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4398-4403.	3.3	38
85	Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E526-35.	3.3	78
86	Schnelle Netzwerkoszillationen im Hippocampus – Phäomene, Mechanismen und offene Fragen zwischen zelluläen und systemischen Neurowissenschaften. E-Neuroforum, 2013, 19, 3-13.	0.2	0
87	Energy Demand of Synaptic Transmission at the Hippocampal Schaffer-Collateral Synapse. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2076-2083.	2.4	37
88	Segregation of Axonal and Somatic Activity During Fast Network Oscillations. Science, 2012, 336, 1458-1461.	6.0	104
89	Group II Metabotropic Glutamate Receptors Depress Synaptic Transmission onto Subicular Burst Firing Neurons. PLoS ONE, 2012, 7, e45039.	1.1	8
90	Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012, 486, 256-260.	13.7	570

#	Article	IF	CITATIONS
91	Novel APP/A \hat{l}^2 mutation K16N produces highly toxic heteromeric A \hat{l}^2 oligomers. EMBO Molecular Medicine, 2012, 4, 647-659.	3.3	68
92	Axonal properties determine somatic firing in a model of <i>in vitro</i> CA1 hippocampal sharp wave/ripples and persistent gamma oscillations. European Journal of Neuroscience, 2012, 36, 2650-2660.	1.2	29
93	GluK1 inhibits calcium dependent and independent transmitter release at associational/commissural synapses in area CA3 of the hippocampus. Hippocampus, 2012, 22, 57-68.	0.9	8
94	Cannabinoids disrupt hippocampal sharp waveâ€ripples via inhibition of glutamate release. Hippocampus, 2012, 22, 1350-1362.	0.9	28
95	Homeostatic regulation of NCAM polysialylation is critical for correct synaptic targeting. Cellular and Molecular Life Sciences, 2012, 69, 1179-1191.	2.4	19
96	Synaptic PRG-1 Modulates Excitatory Transmission via Lipid Phosphate-Mediated Signaling. Cell, 2011, 146, 1043.	13.5	0
97	RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release. Science, 2011, 334, 1565-1569.	6.0	257
98	Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E607-16.	3.3	105
99	Muskelin Regulates Actin Filament- and Microtubule-Based GABAA Receptor Transport in Neurons. Neuron, 2011, 70, 66-81.	3.8	64
100	Coherent Phasic Excitation during Hippocampal Ripples. Neuron, 2011, 72, 137-152.	3.8	113
101	Respiratory alkalosis in children with febrile seizures. Epilepsia, 2011, 52, 1949-1955.	2.6	59
102	Structural and functional plasticity of the cytoplasmic active zone. Current Opinion in Neurobiology, 2011, 21, 144-150.	2.0	60
103	Cell-Type-Specific Modulation of Feedback Inhibition by Serotonin in the Hippocampus. Journal of Neuroscience, 2011, 31, 8464-8475.	1.7	27
104	Complementary Sensory and Associative Microcircuitry in Primary Olfactory Cortex. Journal of Neuroscience, 2011, 31, 12149-12158.	1.7	30
105	Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion. Journal of Cell Science, 2011, 124, 3066-3073.	1.2	21
106	Detection of input sites in scanning photostimulation data based on spatial correlations. Journal of Neuroscience Methods, 2010, 192, 286-295.	1.3	11
107	Autaptic cultures of single hippocampal granule cells of mice and rats. European Journal of Neuroscience, 2010, 32, 939-947.	1.2	25
108	Neuroligin 1 Is Dynamically Exchanged at Postsynaptic Sites. Journal of Neuroscience, 2010, 30, 12733-12744.	1.7	56

#	Article	IF	CITATIONS
109	Analysis of Excitatory Microcircuitry in the Medial Entorhinal Cortex Reveals Cell-Type-Specific Differences. Neuron, 2010, 68, 1059-1066.	3.8	324
110	Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB Journal, 2010, 24, 844-852.	0.2	193
111	Natural Spike Trains Trigger Short- and Long-Lasting Dynamics at Hippocampal Mossy Fiber Synapses in Rodents. PLoS ONE, 2010, 5, e9961.	1.1	18
112	Electrical Coupling of Axons. , 2010, , 85-102.		0
113	An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro. PLoS ONE, 2009, 4, e6925.	1.1	54
114	Role of Amyloid-Â Glycine 33 in Oligomerization, Toxicity, and Neuronal Plasticity. Journal of Neuroscience, 2009, 29, 7582-7590.	1.7	95
115	Dendritic Compartment and Neuronal Output Mode Determine Pathway-Specific Long-Term Potentiation in the Piriform Cortex. Journal of Neuroscience, 2009, 29, 13649-13661.	1.7	47
116	The function of glutamatergic synapses is not perturbed by severe knockdown of 4.1N and 4.1G expression. Journal of Cell Science, 2009, 122, 735-744.	1.2	22
117	Differential involvement of the extracellular 6â€Oâ€endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. Journal of Cellular and Molecular Medicine, 2009, 13, 4505-4521.	1.6	66
118	Synaptic PRG-1 Modulates Excitatory Transmission via Lipid Phosphate-Mediated Signaling. Cell, 2009, 138, 1222-1235.	13.5	124
119	Synaptic plasticity in the subiculum. Progress in Neurobiology, 2009, 89, 334-342.	2.8	40
120	Synaptic contributions to in vitro hippocampal sharp-wave ripples. BMC Neuroscience, 2009, 10, .	0.8	1
121	Single-Trial Phase Precession in the Hippocampus. Journal of Neuroscience, 2009, 29, 13232-13241.	1.7	118
122	GluK2-Mediated Excitability within the Superficial Layers of the Entorhinal Cortex. PLoS ONE, 2009, 4, e5576.	1.1	9
123	A novel control software that improves the experimental workflow of scanning photostimulation experiments. Journal of Neuroscience Methods, 2008, 175, 44-57.	1.3	16
124	Two different forms of longâ€ŧerm potentiation at CA1–subiculum synapses. Journal of Physiology, 2008, 586, 2725-2734.	1.3	57
125	Phase Precession Through Synaptic Facilitation. Neural Computation, 2008, 20, 1285-1324.	1.3	41
126	Sortilin-related Receptor with A-type Repeats (SORLA) Affects the Amyloid Precursor Protein-dependent Stimulation of ERK Signaling and Adult Neurogenesis. Journal of Biological Chemistry, 2008, 283, 14826-14834.	1.6	95

#	Article	IF	CITATIONS
127	Rules of Plasticity. Science, 2008, 319, 39-40.	6.0	9
128	Differential cAMP Signaling at Hippocampal Output Synapses. Journal of Neuroscience, 2008, 28, 14358-14362.	1.7	28
129	Temporal compression mediated by short-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4417-4422.	3.3	23
130	A Defect in the Ionotropic Glutamate Receptor 6 Gene (GRIK2) Is Associated with Autosomal Recessive Mental Retardation. American Journal of Human Genetics, 2007, 81, 792-798.	2.6	137
131	Differential modulation of shortâ€term synaptic dynamics by longâ€term potentiation at mouse hippocampal mossy fibre synapses. Journal of Physiology, 2007, 585, 853-865.	1.3	24
132	Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis. Neurobiology of Disease, 2007, 25, 545-552.	2.1	24
133	Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories. Neuron, 2006, 52, 437-444.	3.8	743
134	Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nature Medicine, 2006, 12, 817-823.	15.2	257
135	Functional GABA uptake at inhibitory synapses in CA1 of chronically epileptic rats. Epilepsy Research, 2005, 66, 199-202.	0.8	6
136	Synaptic plasticity at hippocampal mossy fibre synapses. Nature Reviews Neuroscience, 2005, 6, 863-876.	4.9	824
137	Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 2005, 563, 663-670.	1.3	106
138	Inactivity Sets XL Synapses in Motion. Neuron, 2005, 47, 623-625.	3.8	1
139	Assessing the Role of GLUK5 and GLUK6 at Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2004, 24, 10093-10098.	1.7	65
140	Characterization of the inhibitory glycine receptor on entorhinal cortex neurons. European Journal of Neuroscience, 2004, 19, 1987-1991.	1.2	17
141	Glutamate transporters and metabotropic receptors regulate excitatory neurotransmission in the medial entorhinal cortex of the rat. Brain Research, 2004, 1027, 151-160.	1.1	18
142	Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nature Neuroscience, 2003, 6, 1058-1063.	7.1	114
143	Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14397-14402.	3.3	131
144	Mediation of Hippocampal Mossy Fiber Long-Term Potentiation by Presynaptic Ih Channels. Science, 2002, 295, 143-147.	6.0	148

#	Article	IF	CITATIONS
145	Axonal Gap Junctions Between Principal Neurons: A Novel Source of Network Oscillations, and Perhaps Epileptogenesis. Reviews in the Neurosciences, 2002, 13, 1-30.	1.4	207
146	Glutamine Uptake by Neurons: Interaction of Protons with System A Transporters. Journal of Neuroscience, 2002, 22, 62-72.	1.7	188
147	Axo-Axonal Coupling. Neuron, 2001, 31, 831-840.	3.8	390
148	Kainate Receptors Depress Excitatory Synaptic Transmission at CA3â†'CA1 Synapses in the Hippocampus via a Direct Presynaptic Action. Journal of Neuroscience, 2001, 21, 2958-2966.	1.7	146
149	Synaptic and Nonsynaptic Contributions to Giant IPSPs and Ectopic Spikes Induced by 4-Aminopyridine in the Hippocampus In Vitro. Journal of Neurophysiology, 2001, 85, 1246-1256.	0.9	78
150	Enhanced Temporal Stability of Cholinergic Hippocampal Gamma Oscillations Following Respiratory Alkalosis In Vitro. Journal of Neurophysiology, 2001, 85, 2063-2069.	0.9	37
151	Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus. European Journal of Neuroscience, 2001, 13, 413-420.	1.2	55
152	Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses. Science, 2001, 291, 1972-1976.	6.0	245
153	Ripple (˜200-Hz) Oscillations in Temporal Structures. Journal of Clinical Neurophysiology, 2000, 17, 361-376.	0.9	83
154	AMPA receptors jump the synaptic cleft. Nature Neuroscience, 2000, 3, 527-529.	7.1	4
155	Dopamine depresses polysynaptic inhibition in rat subicular neurons. Brain Research, 2000, 861, 160-164.	1.1	5
156	Dopamine Depresses Excitatory Synaptic Transmission Onto Rat Subicular Neurons Via Presynaptic D1-Like Dopamine Receptors. Journal of Neurophysiology, 2000, 84, 112-119.	0.9	69
157	Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses. Neuron, 2000, 27, 327-338.	3.8	195
158	Carbachol-induced changes in excitability and [Ca2+]isignalling in projection cells of medial entorhinal cortex layers II and III. European Journal of Neuroscience, 1999, 11, 3626-3636.	1.2	54
159	Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. British Journal of Pharmacology, 1999, 128, 248-254.	2.7	24
160	Retigabine strongly reduces repetitive firing in rat entorhinal cortex. European Journal of Pharmacology, 1999, 386, 165-171.	1.7	37
161	High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience, 1999, 92, 407-426.	1.1	250
162	Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 1998, 394, 189-192.	13.7	625

#	ARTICLE	lF	CITATIONS
163	Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. Journal of Physiology, 1998, 508, 119-129.	1.3	51
164	Laminar difference in GABA uptake and GAT-1 expression in rat CA1. Journal of Physiology, 1998, 512, 643-649.	1.3	67
165	Comparison of the effects of serotonin in the hippocampus and the entorhinal cortex. Molecular Neurobiology, 1998, 17, 59-72.	1.9	31
166	Interaction between superficial layers of the entorhinal cortex and the hippocampus in normal and epileptic temporal lobe. Epilepsy Research, 1998, 32, 183-193.	0.8	38
167	Dopamine suppresses stimulus-induced field potentials in layer III of rat medial entorhinal cortex. Neuroscience Letters, 1998, 255, 119-121.	1.0	20
168	Serotonin Reduces Polysynaptic Inhibition via 5-HT1A Receptors in the Superficial Entorhinal Cortex. Journal of Neurophysiology, 1998, 80, 1116-1121.	0.9	21
169	Systemic administration of the phencyclidine compound MK-801 affects stimulus-induced field potentials selectively in layer III of rat medial entorhinal cortex. Neuroscience Letters, 1997, 221, 93-96.	1.0	15
170	Frequency-Dependent Information Flow From the Entorhinal Cortex to the Hippocampus. Journal of Neurophysiology, 1997, 78, 3444-3449.	0.9	65
171	Electrophysiology and morphology of a new type of cell within layer II of the rat lateral entorhinal cortex in vitro. Neuroscience Letters, 1995, 193, 149-152.	1.0	7
172	Effects of losigamone on synaptic potentials and spike frequency habituation in rat entorhinal cortex and hippocarnpal CA1 neurones. Neuroscience Letters, 1995, 200, 141-143.	1.0	15
173	Serotonin reduces synaptic excitation of principal cells in the superficial layers of rat hippocampal-entorhinal cortex combined slices. Neuroscience Letters, 1995, 190, 37-40.	1.0	31
174	Propagation of Hippocampal Ripples to the Neocortex by Way of a Subiculum-Retrospleanial Pathway. SSRN Electronic Journal, 0, , .	0.4	1