
Asia Fernandez-Carvajal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Tetramerization Domain in the C Terminus of the Vanilloid Receptor. Journal of Neuroscience, 2004, 24, 5307-5314.	1.7	176
2	Advances in modulating thermosensory TRP channels. Expert Opinion on Therapeutic Patents, 2012, 22, 999-1017.	2.4	91
3	Molecular architecture of the vanilloid receptor. Insights for drug design. FEBS Journal, 2004, 271, 1820-1826.	0.2	86
4	A Role of the Transient Receptor Potential Domain of Vanilloid Receptor I in Channel Gating. Journal of Neuroscience, 2007, 27, 11641-11650.	1.7	82
5	Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB Journal, 2008, 22, 3298-3309.	0.2	79
6	TRP channels interaction with lipids and its implications in disease. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1818-1827.	1.4	52
7	Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. Journal of Inflammation Research, 2011, 4, 67.	1.6	42
8	Membraneâ€ŧethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB Journal, 2011, 25, 1628-1640.	0.2	37
9	Rab4 interacts with the human Pâ€glycoprotein and modulates its surface expression in multidrug resistant K562 cells. International Journal of Cancer, 2011, 128, 192-205.	2.3	32
10	Identification of a Potent Tryptophan-Based TRPM8 Antagonist With in Vivo Analgesic Activity. Journal of Medicinal Chemistry, 2018, 61, 6140-6152.	2.9	31
11	Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opinion on Investigational Drugs, 2020, 29, 1209-1222.	1.9	30
12	Design and Characterization of a Noncompetitive Antagonist of the Transient Receptor Potential Vanilloid Subunit 1 Channel With In Vivo Analgesic and Anti-inflammatory Activity. Journal of Pain, 2006, 7, 735-746.	0.7	29
13	Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) Channel Softly: The Discovery of Passerini Adducts as a Topical Treatment for Inflammatory Skin Disorders. Journal of Medicinal Chemistry, 2018, 61, 4436-4455.	2.9	28
14	Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis Treatment. Pharmaceutics, 2019, 11, 14.	2.0	24
15	lonic Channels as Targets for Drug Design: A Review on Computational Methods. Pharmaceutics, 2011, 3, 932-953.	2.0	23
16	Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: A new target for a privileged structure. European Journal of Medicinal Chemistry, 2014, 86, 724-739.	2.6	23
17	New Strategies to Develop Novel Pain Therapies: Addressing Thermoreceptors from Different Points of View. Pharmaceuticals, 2012, 5, 16-48.	1.7	22
18	Triazine-Based Vanilloid 1 Receptor Open Channel Blockers: Design, Synthesis, Evaluation, and SAR Analysis. Journal of Medicinal Chemistry, 2011, 54, 7441-7452.	2.9	21

#	Article	IF	CITATIONS
19	Design and Synthesis of Indole-Based Peptoids as Potent Noncompetitive Antagonists of Transient Receptor Potential Vanilloid 1. Journal of Medicinal Chemistry, 2007, 50, 6133-6143.	2.9	19
20	De Novo Designed Library of Linear Helical Peptides: An Exploratory Tool in the Discovery of Protein–Protein Interaction Modulators. ACS Combinatorial Science, 2014, 16, 250-258.	3.8	16
21	A capsaicinoid-based soft drug, AG1529, for attenuating TRPV1-mediated histaminergic and inflammatory sensory neuron excitability. Scientific Reports, 2021, 11, 246.	1.6	16
22	Adamantyl Analogues of Paracetamol as Potent Analgesic Drugs via Inhibition of TRPA1. PLoS ONE, 2014, 9, e113841.	1.1	15
23	Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their In Vitro Characterization and In Vivo Analgesic Activities. Journal of Medicinal Chemistry, 2020, 63, 9672-9694.	2.9	15
24	Structure-Based Design of Novel Biphenyl Amide Antagonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 8 Channels with Potential Implications in the Treatment of Sensory Neuropathies. ACS Chemical Neuroscience, 2020, 11, 268-290.	1.7	13
25	1,3-diphenylpropan-1-ones as allosteric modulators of α7 nACh receptors with analgesic and antioxidant properties. Future Medicinal Chemistry, 2016, 8, 731-749.	1.1	12
26	Paclitaxel in vitro reversibly sensitizes the excitability of IB4(â^') and IB4(+) sensory neurons from male and female rats. British Journal of Pharmacology, 2022, 179, 3693-3710.	2.7	12
27	Synthesis, high-throughput screening and pharmacological characterization of β–lactam derivatives as TRPM8 antagonists. Scientific Reports, 2017, 7, 10766.	1.6	11
28	1-(2′,5′-Dihydroxyphenyl)-3-(2-fluoro-4-hydroxyphenyl)-1-propanone (RGM079): A Positive Allosteric Modulator of α7 Nicotinic Receptors with Analgesic and Neuroprotective Activity. ACS Chemical Neuroscience, 2019, 10, 3900-3909.	1.7	11
29	Solid-Phase Synthesis of a Library of Amphipatic Hydantoins. Discovery of New Hits for TRPV1 Blockade. ACS Combinatorial Science, 2011, 13, 458-465.	3.8	10
30	New TRPM8 blockers exert anticancer activity over castration-resistant prostate cancer models. European Journal of Medicinal Chemistry, 2022, 238, 114435.	2.6	8
31	Structural and Functional Changes Induced in the Nicotinic Acetylcholine Receptor by Membrane Phospholipids. Journal of Molecular Neuroscience, 2006, 30, 121-124.	1.1	7
32	New transient receptor potential TRPV1, TRPM8 and TRPA1 channel antagonists from a single linear β,γ-diamino ester scaffold. RSC Advances, 2016, 6, 6868-6877.	1.7	7
33	Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Scientific Reports, 2020, 10, 14154.	1.6	7
34	Amino acid and peptide prodrugs of diphenylpropanones positive allosteric modulators of α7 nicotinic receptors with analgesic activity. European Journal of Medicinal Chemistry, 2018, 143, 157-165.	2.6	6
35	Structural and in Vitro Functional Characterization of a Menthyl TRPM8 Antagonist Indicates Species-Dependent Regulation. ACS Medicinal Chemistry Letters, 2021, 12, 758-767.	1.3	6
36	β–Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models. International Journal of Molecular Sciences, 2022, 23, 2692.	1.8	6

#	Article	IF	CITATIONS
37	Highly Functionalized 1,2–Diamino Compounds through Reductive Amination of Amino Acid-Derived β–Keto Esters. PLoS ONE, 2013, 8, e53231.	1.1	5
38	Pharmacology of TRP Channels. , 2015, , 41-71.		4
39	L-Menthol-Loadable Electrospun Fibers of PMVEMA Anhydride for Topical Administration. Pharmaceutics, 2021, 13, 1845.	2.0	4
40	Fluorescence-Based Functional Assays for Ca2+-Permeable ThermoTRP Channels. Methods in Molecular Biology, 2019, 1987, 99-110.	0.4	3
41	Early Stimulation of TREK Channel Transcription and Activity Induced by Oxaliplatin-Dependent Cytosolic Acidification. International Journal of Molecular Sciences, 2020, 21, 7164.	1.8	2
42	Targeting thermoTRP ion channels: in silico preclinical approaches and opportunities. Expert Opinion on Therapeutic Targets, 2020, 24, 1079-1097.	1.5	2
43	Phenylalanine-Derived β-Lactam TRPM8 Modulators. Configuration Effect on the Antagonist Activity. International Journal of Molecular Sciences, 2021, 22, 2370.	1.8	2
44	DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target. Bioorganic Chemistry, 2021, 115, 105231.	2.0	2
45	Solid-Phase Synthesis of New Trp(Nps)-Containing Dipeptide Derivatives as TRPV1 Channel Blockers. Molecules, 2010, 15, 4924-4933.	1.7	1
46	In Vitro and In Vivo Pharmacological Characterization of a Novel TRPM8 Inhibitor Chemotype Identified by Small-Scale Preclinical Screening. International Journal of Molecular Sciences, 2022, 23, 2070.	1.8	0