Xike Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493201/publications.pdf Version: 2024-02-01

XIKE CAO

#	Article	IF	CITATIONS
1	Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed N-Channel Organic Thin-Film Transistors with Mobility of up to 3.50 cm ² V ^{–1} s ^{–1} . Journal of the American Chemical Society, 2013, 135, 2338-2349.	13.7	379
2	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
3	Core-Expanded Naphthalene Diimides Fused with 2-(1,3-Dithiol-2-Ylidene)Malonitrile Groups for High-Performance, Ambient-Stable, Solution-Processed n-Channel Organic Thin Film Transistors. Journal of the American Chemical Society, 2010, 132, 3697-3699.	13.7	274
4	Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. Journal of Materials Chemistry C, 2014, 2, 3099-3117.	5.5	238
5	Application of Azulene in Constructing Organic Optoelectronic Materials: New Tricks for an Old Dog. ChemPlusChem, 2017, 82, 945-956.	2.8	178
6	Incorporation of 2,6â€Connected Azulene Units into the Backbone of Conjugated Polymers: Towards Highâ€Performance Organic Optoelectronic Materials. Angewandte Chemie - International Edition, 2018, 57, 1322-1326.	13.8	160
7	Core-Expanded Naphthalene Diimides Fused with Sulfur Heterocycles and End-Capped with Electron-Withdrawing Groups for Air-Stable Solution-Processed n-Channel Organic Thin Film Transistors. Chemistry of Materials, 2011, 23, 1204-1215.	6.7	147
8	High mobility organic semiconductors for field-effect transistors. Science China Chemistry, 2015, 58, 947-968.	8.2	129
9	Azulene-Based π-Functional Materials: Design, Synthesis, and Applications. Accounts of Chemical Research, 2021, 54, 1737-1753.	15.6	118
10	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie - International Edition, 2018, 57, 8178-8183.	13.8	109
11	Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors Chemistry of Materials, 2011, 23, 3138-3140.	6.7	105
12	Biazulene diimides: a new building block for organic electronic materials. Chemical Science, 2016, 7, 6701-6705.	7.4	103
13	Modulated Thermoelectric Properties of Organic Semiconductors Using Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 3004-3012.	14.9	94
14	First Synthesis of 2,3,6,7-Tetrabromonaphthalene Diimide. Organic Letters, 2007, 9, 3917-3920.	4.6	93
15	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie - International Edition, 2020, 59, 4380-4384.	13.8	90
16	Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
17	Azulene–Pyridine-Fused Heteroaromatics. Journal of the American Chemical Society, 2020, 142, 13598-13605.	13.7	76
18	Thieno[3,4-c]pyrrole-4,6-dione Containing Copolymers for High Performance Field-Effect Transistors. Macromolecules, 2013, 46, 3887-3894.	4.8	68

Χικέ Gao

#	Article	IF	CITATIONS
19	Anthra[2,3- <i>b</i>]benzo[<i>d</i>]thiophene: An Air-Stable Asymmetric Organic Semiconductor with High Mobility at Room Temperature. Chemistry of Materials, 2008, 20, 4188-4190.	6.7	65
20	One-Pot Synthesis of Core-Expanded Naphthalene Diimides: Enabling <i>N</i> -Substituent Modulation for Diverse n-Type Organic Materials. Organic Letters, 2012, 14, 292-295.	4.6	63
21	Azulene-Based BN-Heteroaromatics. Journal of Organic Chemistry, 2020, 85, 70-78.	3.2	57
22	1,2,5,6-Naphthalenediimide Based Donor–Acceptor Copolymers Designed from Isomer Chemistry for Organic Semiconducting Materials. Macromolecules, 2013, 46, 7705-7714.	4.8	56
23	Alkyl Chain Orientations in Dicyanomethyleneâ€Substituted 2,5â€Di(thiophenâ€2â€yl)thienoâ€{3,2â€b]thienoquinoid: Impact on Solidâ€State and Thinâ€Film Transistor Performance. Advanced Functional Materials, 2013, 23, 2277-2284.	14.9	56
24	Linear benzene-fused bis(tetrathiafulvalene) compounds for solution processed organic field-effect transistors. Journal of Materials Chemistry, 2007, 17, 736-743.	6.7	51
25	Novel copolymers incorporating dithieno[3,2-b:2′,3′-d]thiophene moieties for air-stable and high performance organic field-effect transistors. Journal of Materials Chemistry, 2008, 18, 3426.	6.7	49
26	6,6′-Diaryl-substituted biazulene diimides for solution-processable high-performance n-type organic semiconductors. Materials Chemistry Frontiers, 2018, 2, 975-985.	5.9	47
27	Azuleneâ€Embedded [<i>n</i>]Helicenes (<i>n</i> =5, 6 and 7). Angewandte Chemie - International Edition, 2022, 61, .	13.8	46
28	A facile synthesis of linear benzene-fused bis(tetrathiafulvalene) compounds and their application for organic field-effect transistors. Chemical Communications, 2006, , 2750.	4.1	45
29	Synthesis and properties of fluorene or carbazole-based and dicyanovinyl-capped n-type organic semiconductors. Journal of Materials Chemistry, 2008, 18, 1131.	6.7	42
30	Incorporation of 2,6 onnected Azulene Units into the Backbone of Conjugated Polymers: Towards Highâ€Performance Organic Optoelectronic Materials. Angewandte Chemie, 2018, 130, 1336-1340.	2.0	40
31	Naphthalenediimides Fused with 2-(1,3-Dithiol-2-ylidene)acetonitrile: Strong Electron-Deficient Building Blocks for High-Performance n-Type Polymeric Semiconductors. ACS Macro Letters, 2014, 3, 1174-1177.	4.8	39
32	Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.	12.8	39
33	Scanning Kelvin Probe Microscopy Investigation of the Role of Minority Carriers on the Switching Characteristics of Organic Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 4713-4719.	21.0	34
34	High performance organic thin film transistor based on pentacene derivative: 6,13-dichloropentacene. Journal of Materials Chemistry, 2012, 22, 10496.	6.7	33
35	A Class of Electron-Transporting Vinylogous Tetrathiafulvalenes Constructed by the Dimerization of Core-Expanded Naphthalenediimides. Organic Letters, 2017, 19, 468-471.	4.6	33
36	Incorporation of 1,3-Free-2,6-Connected Azulene Units into the Backbone of Conjugated Polymers: Improving Proton Responsiveness and Electrical Conductivity. ACS Macro Letters, 2019, 8, 1360-1364.	4.8	33

Χικε Gao

#	Article	IF	CITATIONS
37	Enhanced Thermoelectric Performance of nâ€Type Organic Semiconductor via Electric Field Modulated Photoâ€Thermoelectric Effect. Advanced Materials, 2020, 32, e2000273.	21.0	31
38	High-Performance Organic Semiconducting Polymers by a Resonance-Assisted Hydrogen Bonding Approach. Chemistry of Materials, 2021, 33, 580-588.	6.7	31
39	A non-planar pentaphenylbenzene functionalized benzo[2,1,3]thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 2709.	6.7	30
40	Highly efficient blue electrophosphorescent devices with a new series of host materials: polyphenylene-dendronized oxadiazole derivatives. Journal of Materials Chemistry, 2007, 17, 3788.	6.7	28
41	Incorporation of benzothiadiazole into the backbone of 1,2,5,6-naphthalenediimide based copolymers, enabling much improved film crystallinity and charge carrier mobility. Polymer Chemistry, 2016, 7, 573-579.	3.9	28
42	High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide. Applied Physics Letters, 2013, 103, .	3.3	27
43	Recent Advances in Molecular Design of Organic Thermoelectric Materials. CCS Chemistry, 2021, 3, 2212-2225.	7.8	26
44	A facile synthesis of 2,3,6,7-tetrabromonaphthalene diimides toward new π-extended naphthalene diimides. Tetrahedron Letters, 2013, 54, 2271-2273.	1.4	24
45	An Abnormal 3.7â€Volt O3â€Type Sodiumâ€lon Battery Cathode. Angewandte Chemie, 2018, 130, 8310-8315.	2.0	23
46	Phase Transitions and Anisotropic Thermal Expansion in High Mobility Coreâ€expanded Naphthalene Diimide Thin Film Transistors. Advanced Functional Materials, 2014, 24, 7211-7220.	14.9	22
47	Flexible Monolayer Molecular Crystalâ€Field Effect Transistors for Ultrasensitive and Selective Detection of Dimethoate. Advanced Electronic Materials, 2020, 6, 2000579.	5.1	22
48	A solution-processable dicyano-substituted quinoidal oligothiophene for air-stable ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 5128.	5.5	21
49	Naphthalene Diimides Endcapped with Ethynylazulene: Molecular Design, Synthesis and Properties. Chinese Journal of Organic Chemistry, 2017, 37, 711.	1.3	21
50	Organic field-effect transistors based on tetrathiafulvalene derivatives. Pure and Applied Chemistry, 2008, 80, 2405-2423.	1.9	20
51	Azulene-Containing Squaraines for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 19192-19203.	8.0	20
52	Effect of Alkylâ€Chain Length on Charge Transport Properties of Organic Semiconductors and Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1800175.	5.1	19
53	Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Science China Chemistry, 2021, 64, 2180-2192.	8.2	17
54	Enantiopure <i>versus</i> racemic naphthalene diimide-based n-type organic semiconductors: effect on charge transport. Journal of Materials Chemistry C, 2019, 7, 2659-2665.	5.5	16

Χικε Gao

#	Article	IF	CITATIONS
55	Azuleneâ€Embedded [<i>n</i>]Helicenes (<i>n</i> =5, 6 and 7). Angewandte Chemie, 2022, 134, .	2.0	14
56	High-performance n-channel field effect transistors based on solution-processed dicyanomethylene-substituted tetrathienoquinoid. RSC Advances, 2014, 4, 16939-16943.	3.6	13
57	Design, Synthesis and Field Effect Characteristics of Diazulene Diimides Bridged by Aromatic Group. Acta Chimica Sinica, 2020, 78, 788.	1.4	13
58	Design, Synthesis and Properties of 2/6-Aryl Substituted Azulene Derivatives. Chinese Journal of Organic Chemistry, 2018, 38, 2680.	1.3	13
59	Incorporation of Electron-Rich Indacenodithiophene Units into the Backbone of 2,6-Azulene-Based Conjugated Polymers for Proton-Responsive Materials and p-Type Polymeric Semiconductors. , 2022, 4, 392-400.		13
60	New Coreâ€Expanded Naphthalene Diimides for nâ€Channel Organic Thin Film Transistors. Chinese Journal of Chemistry, 2013, 31, 1428-1438.	4.9	12
61	Synthesis of largely π-extended naphthalenediimides via C–H activation towards highly soluble and narrow band-gap organic optoelectronic materials. Organic Chemistry Frontiers, 2017, 4, 823-827.	4.5	12
62	Azulenoisoindigo: A building block for π-functional materials with reversible redox behavior and proton responsiveness. Chinese Chemical Letters, 2022, 33, 2147-2150.	9.0	12
63	Linking polythiophene chains with vinyleneâ€bridges: A way to improve charge transport in polymer fieldâ€effect transistors. Journal of Polymer Science Part A, 2009, 47, 1381-1392.	2.3	11
64	Synthesis of monolateral and bilateral sulfur-heterocycle fused naphthalene diimides (NDIs) from monobromo and dibromo NDIs. Organic Chemistry Frontiers, 2015, 2, 372-377.	4.5	11
65	Dithieno[3,2-a:3′,2′-j][5,6,11,12]chrysene diimides and their molecular energy level regulation. Materials Chemistry Frontiers, 2017, 1, 1635-1640.	5.9	11
66	New Ï€â€Extended Naphthalene Diimides for Highâ€Performance nâ€Type Organic Semiconductors with NIR Absorption Properties. Asian Journal of Organic Chemistry, 2018, 7, 2279-2284.	2.7	10
67	Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells. Organic Electronics, 2018, 61, 113-118.	2.6	10
68	Dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimides: a versatile electron-deficient building block for polymeric semiconductors. Chemical Communications, 2019, 55, 10234-10237.	4.1	10
69	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie, 2020, 132, 4410-4414.	2.0	10
70	Tuning the Charge Transport Property of Naphthalene Diimide Derivatives by Changing the Substituted Position of Fluorine Atom on Molecular Backbone. Chinese Journal of Chemistry, 2014, 32, 1057-1064.	4.9	9
71	New ladderâ€ŧype conjugated polymer with broad absorption, high thermal stability, and low band gap. Journal of Polymer Science Part A, 2012, 50, 4272-4276.	2.3	8
72	Extremely simple phenothiazine molecules with room-temperature phosphorescence for understanding mechanoluminescence excitation process. Science China Chemistry, 2018, 61, 641-642.	8.2	8

Χικε Gao

#	Article	IF	CITATIONS
73	Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Organic Letters, 2022, 24, 2414-2419.	4.6	8
74	Dipole-improved gating of azulene-based single-molecule transistors. Journal of Materials Chemistry C, 2022, 10, 7803-7809.	5.5	8
75	2,6-Azulene-based Homopolymers: Design, Synthesis, and Application in Proton Exchange Membrane Fuel Cells. ACS Macro Letters, 2022, 11, 680-686.	4.8	8
76	From Homochiral Assembly to Heterochiral Assembly: A Leap in Charge Transport Properties of Binaphthol-Based Axially Chiral Materials. Langmuir, 2019, 35, 6188-6195.	3.5	6
77	Synthesis and Physicochemical Properties of Strong Electron Acceptor 14,14,15,15â€Tetracyanoâ€6,13â€pentacenequinodimethane (TCPQ) Diimide. European Journal of Organic Chemistry, 2012, 2012, 6136-6139.	2.4	5
78	Organic Electronics: Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spinâ€Coating (Adv. Mater. 10/2013). Advanced Materials, 2013, 25, 1370-1370.	21.0	5
79	Selenium-containing core-expanded naphthalene diimides for high performance n-type organic semiconductors. Science China Chemistry, 2020, 63, 1182-1190.	8.2	5
80	nâ€Channel Organic Transistors Processed from Halogenâ€Free Solvents: Solvent Effect on Thinâ€Film Morphology and Charge Transport. Chinese Journal of Chemistry, 2016, 34, 689-695.	4.9	4
81	Organic crystalline monolayers for ideal behaviours in organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 12057-12062.	5.5	3
82	Zwitterionic side chain-modified conjugated polymers with greatly enhanced ambipolar charge-transport mobilities. Chemical Communications, 2021, 57, 11181-11184.	4.1	3
83	Design, Synthesis and Properties of Indacenodithiophene Derivatives End-Capped with Azulene. Chinese Journal of Organic Chemistry, 2020, 40, 3916.	1.3	3
84	Atropisomeric Conjugated Diimides: A Class of Thermally Responsive Organic Semiconductors. , 2022, 4, 363-369.		3
85	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	5.5	2
86	Synthesis and Field-Effect Characteristics of the Chiral Naphthalene Diimide Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 4400.	1.3	2
87	Design, Synthesis and Properties of Azulene-Based BN-[4]Helicenes [※] . Acta Chimica Sinica, 2022, 80, 29.	1.4	2
88	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	5.1	2
89	Rhodanine-Bridged Core-Expanded Naphthalene Diimide Derivatives for n-Type Semiconductors. Organic Materials, 2020, 02, 165-172.	2.0	0