Constantinos P Zambirinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 2018, 8, 403-416.	7.7	834
2	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	13.5	691
3	The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature, 2016, 532, 245-249.	13.7	454
4	$\hat{I}^{3}\hat{I}'$ T Cells Support Pancreatic Oncogenesis by Restraining $\hat{I}\pm\hat{I}^{2}$ T Cell Activation. Cell, 2016, 166, 1485-1499.e15.	13.5	266
5	MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. Journal of Experimental Medicine, 2012, 209, 1671-1687.	4.2	254
6	Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nature Medicine, 2017, 23, 556-567.	15.2	254
7	Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. Journal of Clinical Investigation, 2012, 122, 4118-4129.	3.9	173
8	TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. Journal of Experimental Medicine, 2015, 212, 2077-2094.	4.2	142
9	Dendritic Cell Populations With Different Concentrations of Lipid Regulate Tolerance and Immunity in Mouse and Human Liver. Gastroenterology, 2012, 143, 1061-1072.	0.6	140
10	Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology, 2013, 58, 589-602.	3.6	139
11	Pancreatic Cancer, Inflammation, and Microbiome. Cancer Journal (Sudbury, Mass), 2014, 20, 195-202.	1.0	137
12	Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death and Disease, 2015, 6, e1759-e1759.	2.7	106
13	Role of Fatty-Acid Synthesis in Dendritic Cell Generation and Function. Journal of Immunology, 2013, 190, 4640-4649.	0.4	90
14	Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways. Cell Reports, 2015, 13, 1909-1921.	2.9	71
15	TGF-Î ² Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia. PLoS ONE, 2015, 10, e0132786.	1.1	66
16	Interleukin 17–Producing γÎ⊤ Cells Promote Hepatic Regeneration in Mice. Gastroenterology, 2014, 147, 473-484.e2.	0.6	64
17	Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreaticAcancer. Hpb, 2018, 20, 597-604.	0.1	52
18	Adoptive Immunotherapy of Epithelial Ovarian Cancer with Vγ9Vδ2 T Cells, Potentiated by Liposomal Alendronic Acid. Journal of Immunology, 2014, 193, 5557-5566.	0.4	43

#	Article	IF	CITATIONS
19	P53 and EGFR expression in colorectal cancer: a reappraisal of 'old' tissue markers in patients with long follow-up. Anticancer Research, 2009, 29, 785-91.	0.5	32
20	Cancer Manipulation of Host Physiology: Lessons from Pancreatic Cancer. Trends in Molecular Medicine, 2017, 23, 465-481.	3.5	31
21	Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy. Scientific Reports, 2020, 10, 15664.	1.6	23
22	Signaling via MYD88 in the pancreatic tumor microenvironment. Oncolmmunology, 2013, 2, e22567.	2.1	17
23	Induction of TRIF- or MYD88-dependent pathways perturbs cell cycle regulation in pancreatic cancer. Cell Cycle, 2013, 12, 1153-1154.	1.3	13
24	Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. Annals of Surgical Oncology, 2022, 29, 4962-4974.	0.7	11
25	The impact of the stromal cell-derived factor-1–3′A and E-selectin S128R polymorphisms on breast cancer. Molecular Biology Reports, 2013, 40, 43-50.	1.0	10
26	Detailed Analysis of Margin Positivity and the Site of Local Recurrence After Pancreaticoduodenectomy. Annals of Surgical Oncology, 2021, 28, 539-549.	0.7	9
27	The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers, 2022, 14, 3028.	1.7	9
28	Analysis of the stromal cell-derived factor 1-3'A gene polymorphism in pancreatic cancer. Molecular Medicine Reports, 2010, 3, 693-8.	1.1	7
29	Gorham-Stout disease. Journal of Surgical Orthopaedic Advances, 2010, 19, 85-90.	0.1	6
30	Metastatic squamous cell carcinoma of known and unknown primary origin treated with axillary or inguinal lymphadenectomy. American Journal of Surgery, 2018, 216, 963-968.	0.9	4
31	Undefined familial colorectal cancer. World Journal of Gastrointestinal Oncology, 2009, 1, 12.	0.8	4
32	Early liver metastases after "failure―of adjuvant chemotherapy for stage III colorectal cancer: is there a role for additional adjuvant therapy?. Hpb, 2021, 23, 601-608.	0.1	3
33	Divergent effects of necroptosis blockade in acute liver injury. Journal of the American College of Surgeons, 2014, 219, e106.	0.2	1
34	Anatomy of the Pancreas and Biliary Tree. , 2018, , 23-47.		1
35	TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. Journal of Cell Biology, 2015, 211, 21120IA232.	2.3	1
36	Toll-like receptor 7 regulates pancreatic inflammation and transformation. Journal of the American College of Surgeons, 2012, 215, S16.	0.2	0

#	Article	IF	CITATIONS
37	Inhibition of dendritic cells fatty acid synthesis enhance their immune-stimulatory potential. Journal of the American College of Surgeons, 2012, 215, S130.	0.2	0
38	Dendritic cells regulate fibro-inflammation but exacerbate steatosis in non-alcoholic steatohepatitis. Journal of the American College of Surgeons, 2012, 215, S138-S139.	0.2	0
39	Gamma delta T cells regulate pancreatitis. Journal of the American College of Surgeons, 2013, 217, S17-S18.	0.2	0
40	Abstract A102: Dendritic cells contribute to pancreatic fibroinflammatory disease and the transition to neoplasia , 2012, , .		0
41	Abstract A08: Dectin-1 signaling drives pancreatic oncogenesis by promoting adaptive immune suppression. , 2017, , .		0
42	Letter to the editor regarding "Variant anatomy of the biliary system as a cause of pancreatic and peri-ampullary cancers.― Hpb, 2020, 22, 1224.	0.1	0
43	ASO Author Reflections: Predicting Pancreatic Cancer Liver Metastasis by Integrating Primary Tumor Clinicopathologic Features and Liver Radiomics. Annals of Surgical Oncology, 2022, , 1.	0.7	0
44	ASO Visual Abstract: Recurrence After Resection of Pancreatic Cancer – Can Radiomics Predict Patients at Greatest Risk of LiverÂMetastasis?. Annals of Surgical Oncology, 2022, , .	0.7	0