
Christian F Krebs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of Evidence for an Association between Previous HEV Genotype-3 Exposure and Glomerulonephritis in General. Pathogens, 2022, 11, 18.	1.2	4
2	Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathogens, 2022, 18, e1010430.	2.1	12
3	Abstract 3374: Large-scale single-cell whole transcriptomic analyses reveal distinct malignant phenotypes of CTCs from NSCLC patients. Cancer Research, 2022, 82, 3374-3374.	0.4	1
4	An extracellular vesicle-related gene expression signature identifies high-risk patients in medulloblastoma. Neuro-Oncology, 2021, 23, 586-598.	0.6	8
5	Clonal expansion and activation of tissue-resident memory-like T _H 17 cells expressing GM-CSF in the lungs of patients with severe COVID-19. Science Immunology, 2021, 6, .	5.6	125
6	A fetal wave of human type 3 effector γδ cells with restricted TCR diversity persists into adulthood. Science Immunology, 2021, 6, .	5.6	52
7	Deep learning–based molecular morphometrics for kidney biopsies. JCI Insight, 2021, 6, .	2.3	31
8	T cell plasticity in renal autoimmune disease. Cell and Tissue Research, 2021, 385, 323-333.	1.5	12
9	Single-cell biology to decode the immune cellular composition of kidney inflammation. Cell and Tissue Research, 2021, 385, 435-443.	1.5	5
10	Tissue-specific therapy in immune-mediated kidney diseases: new ARGuments for targeting the IL-23/IL-17 axis. Journal of Clinical Investigation, 2021, 131, .	3.9	7
11	Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities. Cell and Tissue Research, 2021, 385, 457-473.	1.5	11
12	Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis. Journal of Hepatology, 2021, 75, 414-423.	1.8	49
13	IL-17 Receptor C Signaling Controls CD4+ TH17 Immune Responses and Tissue Injury in Immune-Mediated Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 3081-3098.	3.0	14
14	Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nature Communications, 2020, 11, 166.	5.8	118
15	Pathogen-induced tissue-resident memory T _H 17 (T _{RM} 17) cells amplify autoimmune kidney disease. Science Immunology, 2020, 5, .	5.6	58
16	Drawing a single-cell landscape of the human kidney in (pseudo)-space and time. Kidney International, 2020, 97, 842-844.	2.6	2
17	Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ VÎ ³ 6+ T Cells to Skin Residency as Activated Effector Cells. Cell Reports, 2019, 27, 3657-3671.e4.	2.9	79
18	Role of regulatory T cells in experimental autoimmune glomerulonephritis. American Journal of Physiology - Renal Physiology, 2019, 316, F572-F581.	1.3	4

CHRISTIAN F KREBS

#	Article	IF	CITATIONS
19	IL-17C/IL-17 Receptor E Signaling in CD4+ T Cells Promotes TH17 Cell-Driven Glomerular Inflammation. Journal of the American Society of Nephrology: JASN, 2018, 29, 1210-1222.	3.0	50
20	Plasticity and heterogeneity of Th17 in immune-mediated kidney diseases. Journal of Autoimmunity, 2018, 87, 61-68.	3.0	23
21	Colitis Promotes a Pathological Condition of the Liver in the Absence of Foxp3+ Regulatory T Cells. Journal of Immunology, 2018, 201, 3558-3568.	0.4	16
22	Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nature Communications, 2018, 9, 5457.	5.8	93
23	IL-10 Receptor Signaling Is Essential for TR1 Cell Function In Vivo. Journal of Immunology, 2017, 198, 1130-1141.	0.4	108
24	T helper type 17 cells in immune-mediated glomerular disease. Nature Reviews Nephrology, 2017, 13, 647-659.	4.1	79
25	CD4 ⁺ T Cell Fate in Glomerulonephritis: A Tale of Th1, Th17, and Novel Treg Subtypes. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	27
26	IL-17F Promotes Tissue Injury in Autoimmune Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 3666-3677.	3.0	45
27	ISN Nexus 2016 Symposia: Translational Immunology in Kidney Disease—The Berlin Roadmap. Kidney International Reports, 2016, 1, 327-339.	0.4	1
28	Autoimmune Renal Disease Is Exacerbated by S1P-Receptor-1-Dependent Intestinal Th17 Cell Migration to the Kidney. Immunity, 2016, 45, 1078-1092.	6.6	149
29	Plasticity of Th17 Cells in Autoimmune Kidney Diseases. Journal of Immunology, 2016, 197, 449-457.	0.4	31
30	CXCR3+ Regulatory T Cells Control TH1 Responses in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 1933-1942.	3.0	72
31	Immune Mechanisms in Arterial Hypertension. Journal of the American Society of Nephrology: JASN, 2016, 27, 677-686.	3.0	157
32	Function of the Th17/Interleukinâ€17A Immune Response in Murine Lupus Nephritis. Arthritis and Rheumatology, 2015, 67, 475-487.	2.9	83
33	CC Chemokine Ligand 18 in ANCA-Associated Crescentic GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 2105-2117.	3.0	38
34	CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 55-66.	3.0	105
35	Increased expression of (pro)renin receptor does not cause hypertension or cardiac and renal fibrosis in mice. Laboratory Investigation, 2014, 94, 863-872.	1.7	29
36	Deficiency of the Interleukin 17/23 Axis Accelerates Renal Injury in Mice With Deoxycorticosterone Acetate+Angiotensin II–Induced Hypertension. Hypertension, 2014, 63, 565-571.	1.3	74

CHRISTIAN F KREBS

#	Article	IF	CITATIONS
37	MicroRNA-155 Drives TH17 Immune Response and Tissue Injury in Experimental Crescentic GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 1955-1965.	3.0	41
38	AT ₁ antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2012, 303, F1037-F1048.	1.3	28
39	Protective role for CCR5 in murine lupus nephritis. American Journal of Physiology - Renal Physiology, 2012, 302, F1503-F1515.	1.3	29
40	Immature Renal Dendritic Cells Recruit Regulatory CXCR6+ Invariant Natural Killer T Cells to Attenuate Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1987-2000.	3.0	50
41	Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney International, 2012, 82, 72-83.	2.6	84
42	IL-17A Production by Renal Î ³ δT Cells Promotes Kidney Injury in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1486-1495.	3.0	78
43	CCR5 deficiency does not reduce hypertensive end-organ damage in mice. American Journal of Hypertension, 2012, 25, 479-486.	1.0	20
44	Dimethylarginine Dimethylaminohydrolase1 Is an Organ-Specific Mediator of End Organ Damage in a Murine Model of Hypertension. PLoS ONE, 2012, 7, e48150.	1.1	10
45	Podocytes of AT2 Receptor Knockout Mice Are Protected from Angiotensin II-Mediated RAGE Induction. American Journal of Nephrology, 2011, 34, 309-317.	1.4	15
46	Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells. European Journal of Cell Biology, 2011, 90, 665-677.	1.6	7
47	The angiotensin II type 2 receptor in renal disease. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2010, 11, 37-41.	1.0	34
48	NAD+ and ATP Released from Injured Cells Induce P2X7-Dependent Shedding of CD62L and Externalization of Phosphatidylserine by Murine T Cells. Journal of Immunology, 2009, 182, 2898-2908.	0.4	116
49	Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. Kidney International, 2009, 75, 1039-1049.	2.6	65
50	Effect of (pro)renin receptor inhibition by a decoy peptide on renal damage in the clipped kidney of Goldblatt rats. Kidney International, 2008, 74, 823-824.	2.6	20
51	Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney International, 2008, 73, 643-650.	2.6	42
52	Antihypertensive therapy upregulates renin and (pro)renin receptor in the clipped kidney of Goldblatt hypertensive rats. Kidney International, 2007, 72, 725-730.	2.6	82
53	Management of arterial hypertension in obese patients. Current Hypertension Reports, 2007, 9, 491-497.	1.5	15
54	ADPâ€ribosylation of membrane proteins: Unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Annals of Medicine, 2006, 38, 188-199.	1.5	42

#	Article	IF	CITATIONS
55	Treatment of Arterial Hypertension in Obese Patients. , 2006, 151, 230-242.		6
56	CD38 Controls ADP-Ribosyltransferase-2-Catalyzed ADP-Ribosylation of T Cell Surface Proteins. Journal of Immunology, 2005, 174, 3298-3305.	0.4	87
57	Flow cytometric and immunoblot assays for cell surface ADP-ribosylation using a monoclonal antibody specific for ethenoadenosine. Analytical Biochemistry, 2003, 314, 108-115.	1.1	45
58	NAD-Induced T Cell Death. Immunity, 2003, 19, 571-582.	6.6	297