Zhijie Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492738/publications.pdf

Version: 2024-02-01

		567281	580821
26	635	15	25
papers	citations	h-index	g-index
0.6	26	0.6	000
26	26	26	839
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In-situ synthesis of microflower composed of N-doped carbon films and Mo2C coupled with Ni or FeNi alloy for water splitting. Chemical Engineering Journal, 2022, 427, 131712.	12.7	18
2	Deep Eutectic Solvent Membranes Designed by the Same-Anion Strategy for Highly Efficient Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 4002-4012.	6.7	3
3	Synthesis of Three-Dimensional Hierarchical Flower-Like Mg–Al Layered Double Hydroxides with Excellent Adsorption Performance for Organic Anionic Dyes. Transactions of Tianjin University, 2021, 27, 394-408.	6.4	17
4	Study of Turbulence Promoters in Prolonging Membrane Life. Membranes, 2021, 11, 268.	3.0	8
5	Ether-Linked Diamine Carboxylate Ionic Liquid Aqueous Solution for Efficient Absorption of SO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 16786-16794.	3.7	18
6	Hierarchical Nitrogenâ€doped Mo 2 C Nanoparticleâ€inâ€microflower Electrocatalyst: in Situ Synthesis and Efficient Hydrogenâ€evolving Performance in Alkaline and Acidic Media. ChemCatChem, 2020, 12, 6040-6049.	3.7	8
7	Highly Efficient and Reversible Absorption of SO ₂ from Flue Gas Using Diamino Polycarboxylate Protic Ionic Liquid Aqueous Solutions. Energy & Energy & 2019, 33, 8937-8945.	5.1	16
8	Superbase/Acylamido-Based Deep Eutectic Solvents for Multiple-Site Efficient CO ₂ Absorption. Energy & Samp; Fuels, 2019, 33, 7569-7577.	5.1	51
9	Molecular Mechanisms of Suppressing Asphaltene Aggregation and Flocculation by Dodecylbenzenesulfonic Acid Probed by Molecular Dynamics Simulations. Energy & Energy	5.1	34
10	Synthesis of RGO-Supported Molybdenum Carbide (Mo2C-RGO) for Hydrogen Evolution Reaction under the Function of Poly(Ionic Liquid). Industrial & Engineering Chemistry Research, 2019, 58, 8996-9005.	3.7	9
11	Morphology-Controlled Synthesis of Three-Dimensional Hierarchical Flowerlike Mg–Al Layered Double Hydroxides with Enhanced Catalytic Activity for Transesterification. Industrial & Engineering Chemistry Research, 2019, 58, 7937-7947.	3.7	25
12	Asphaltene Aggregation and Assembly Behaviors in Organic Solvents with Water and Inhibitor. Energy & E	5.1	6
13	Porous Hybrid Nanoflower Self-Assembled from Polyoxometalate and Polyionene for Efficient Oxidative Desulfurization. Industrial & Engineering Chemistry Research, 2019, 58, 3618-3629.	3.7	17
14	Improvement in antifouling and separation performance of PVDF hybrid membrane by incorporation of roomâ€temperature ionic liquids grafted halloysite nanotubes for oil–water separation. Journal of Applied Polymer Science, 2018, 135, 46278.	2.6	14
15	Numerical Study on Heat Transfer and Flow Characteristics for Laminar Flow in a Circular Tube with Swirl Generators. Transactions of Tianjin University, 2018, 24, 244-255.	6.4	4
16	Deep eutectic solvent as novel additive for PES membrane with improved performance. Separation and Purification Technology, 2018, 194, 239-248.	7.9	49
17	Biodiesel Production via Transesterification of Soybean Oil Catalyzed by Superhydrophobic Porous Poly(ionic liquid) Solid Base. Energy & Superhydrophobic Poly(ionic liquid) Solid Base.	5.1	38
18	Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid. Journal of Hazardous Materials, 2017, 333, 63-72.	12.4	88

#	Article	IF	CITATION
19	A Novel Supported Liquid Membrane Based on Binary Metal Chloride Deep Eutectic Solvents for Ethylene/Ethane Separation. Industrial & Ethylene/Ethylene/Ethane Separation. Industrial & Ethylene/	3.7	32
20	Effect of <scp>T</scp> ween 80 on morphology and performance of poly(<scp>L</scp> â€lactic acid) ultrafiltration membranes. Journal of Applied Polymer Science, 2017, 134, .	2.6	18
21	Improvement of antifouling performance of poly(<scp>l</scp> â€lactic acid) membranes through incorporating polyaniline nanoparticles. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
22	Enhancing antifouling performance of poly(<scp>l</scp> â€lactide) membranes by <scp>T</scp> i <scp>O</scp> ₂ nanoparticles. Journal of Applied Polymer Science, 2016, 133, .	2.6	8
23	Robust and Durable Superhydrophobic Polyurethane Sponge for Oil/Water Separation. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 11260-11268.	3.7	44
24	Preparation of poly(L-lactic acid) membrane from solvent mixture via immersion precipitation. Separation Science and Technology, 2016, 51, 2940-2947.	2.5	8
25	Efficient Demulsification of Diesel-in-Water Emulsions by Different Structural Dendrimer-Based Demulsifiers. Industrial & Engineering Chemistry Research, 2016, 55, 1748-1759.	3.7	69
26	Isobaric Vapor–Liquid Equilibria for the Binary Mixtures Composed of Ethylene Glycol, 1,2-Propylene Glycol, 1,2-Butanediol, and 1,3-Butanediol at 10.00 kPa. Journal of Chemical & Engineering Data, 2013, 58, 1308-1315.	1.9	27