
Gustav Nystrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492636/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Flexible Polymer and Paperâ€Based Energy Storage Devices. Advanced Materials, 2011, 23, 3751-3769.	11.1	919
2	Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 2018, 57, 7580-7608.	7.2	470
3	Ultrafast All-Polymer Paper-Based Batteries. Nano Letters, 2009, 9, 3635-3639.	4.5	422
4	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	5.8	379
5	Additive manufacturing of silica aerogels. Nature, 2020, 584, 387-392.	13.7	323
6	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	5.6	303
7	A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. Journal of Physical Chemistry B, 2010, 114, 4178-4182.	1.2	258
8	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	7.3	254
9	Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nature Communications, 2015, 6, 7259.	5.8	246
10	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	11.1	234
11	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	15.6	216
12	Nanocellulose Aerogels Functionalized by Rapid Layerâ€byâ€Layer Assembly for High Charge Storage and Beyond. Angewandte Chemie - International Edition, 2013, 52, 12038-12042.	7.2	196
13	Amyloid Templated Gold Aerogels. Advanced Materials, 2016, 28, 472-478.	11.1	149
14	Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottomâ€Up Fabrication. Advanced Materials, 2021, 33, e2000657.	11.1	139
15	Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 19014.	6.7	136
16	Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids. Nature Nanotechnology, 2018, 13, 330-336.	15.6	105
17	Formation of Colloidal Nanocellulose Glasses and Gels. Langmuir, 2017, 33, 9772-9780.	1.6	89
18	Fully 3D Printed and Disposable Paper Supercapacitors. Advanced Materials, 2021, 33, e2101328.	11.1	78

2

GUSTAV NYSTROM

#	Article	lF	CITATIONS
19	Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals. Langmuir, 2016, 32, 442-450.	1.6	76
20	Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochemistry Communications, 2011, 13, 869-871.	2.3	73
21	Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase. ACS Nano, 2018, 12, 5141-5148.	7.3	68
22	Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids. ACS Nano, 2019, 13, 591-600.	7.3	68
23	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	5.2	64
24	Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. ACS Nano, 2021, 15, 7451-7462.	7.3	63
25	Rapid potential step charging of paper-based polypyrrole energy storage devices. Electrochimica Acta, 2012, 70, 91-97.	2.6	60
26	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	5.1	59
27	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Cross‣inking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods, 2021, 5, e2100889.	4.6	59
28	High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers. PLoS ONE, 2011, 6, e29243.	1.1	58
29	Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials. Journal of Materials Science, 2012, 47, 5317-5325.	1.7	51
30	Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach. Nanomaterials, 2019, 9, 1142.	1.9	50
31	Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density. Biomacromolecules, 2019, 20, 1288-1296.	2.6	47
32	Ice-Templated and Cross-Linked Amyloid Fibril Aerogel Scaffolds for Cell Growth. Biomacromolecules, 2017, 18, 2858-2865.	2.6	46
33	Titania-Cellulose Hybrid Monolith for In-Flow Purification of Water under Solar Illumination. ACS Applied Materials & Interfaces, 2018, 10, 29599-29607.	4.0	44
34	3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 10292-10302.	3.2	43
35	Globular protein assembly and network formation at fluid interfaces: effect of oil. Soft Matter, 2021, 17, 1692-1700.	1.2	42
36	Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites. Advanced Functional Materials, 2020, 30, 2002914.	7.8	40

3

GUSTAV NYSTROM

#	Article	IF	CITATIONS
37	Amyloid Templated Organic–Inorganic Hybrid Aerogels. Advanced Functional Materials, 2018, 28, 1703609.	7.8	39
38	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	7.8	38
39	Dual-porous cellulose nanofibril aerogels <i>via</i> modular drying and cross-linking. Nanoscale, 2020, 12, 7383-7394.	2.8	37
40	Bioinspired celluloseâ€integrated MXeneâ€based hydrogels for multifunctional sensing and electromagnetic interference shielding. , 2022, 1, 495-506.		36
41	Sustainable Cellulose Nanofiber Films from Carrot Pomace as Sprayable Coatings for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 342-352.	3.2	32
42	Assembly of Cellulose Nanocrystal–Lysozyme Composite Films with Varied Lysozyme Morphology. Biomacromolecules, 2020, 21, 5139-5147.	2.6	30
43	Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 2021, 8, 29.	1.6	29
44	Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison. Cellulose, 2021, 28, 1387-1403.	2.4	27
45	Nanocellulose Aerogels Functionalized by Rapid Layerâ€byâ€Layer Assembly for High Charge Storage and Beyond. Angewandte Chemie, 2013, 125, 12260-12264.	1.6	26
46	Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces. Biomacromolecules, 2019, 20, 4574-4580.	2.6	25
47	Liquid crystalline filamentous biological colloids: Analogies and differences. Current Opinion in Colloid and Interface Science, 2018, 38, 30-44.	3.4	23
48	Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 2021, 251, 117021.	5.1	22
49	Versatile carbon-loaded shellac ink for disposable printed electronics. Scientific Reports, 2021, 11, 23784.	1.6	22
50	Biopolymerâ€Aerogele und â€5chäme: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 2018, 130, 7704-7733.	1.6	21
51	Confinementâ€Induced Ordering and Selfâ€Folding of Cellulose Nanofibrils. Advanced Science, 2019, 6, 1801540.	5.6	21
52	Nanocelluloseâ€assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3, 582-607.	6.4	21
53	Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale, 2021, 13, 12534-12545.	2.8	19
54	Aligned cellulose nanocrystals and directed nanoscale deposition of colloidal spheres. Cellulose, 2014, 21, 1591-1599.	2.4	17

GUSTAV NYSTROM

#	Article	IF	CITATIONS
55	Self-Assembly Pathways and Antimicrobial Properties of Lysozyme in Different Aggregation States. Biomacromolecules, 2021, 22, 4327-4336.	2.6	17
56	Dual physically and chemically crosslinked regenerated cellulose – Gelatin composite hydrogels towards art restoration. Carbohydrate Polymers, 2020, 234, 115885.	5.1	15
57	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	5.1	14
58	Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules, 2020, 53, 5950-5956.	2.2	13
59	Structure–property relationships of cellulose nanofibril hydro- and aerogels and their building blocks. Nanoscale, 2020, 12, 11638-11646.	2.8	11
60	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	5.2	11
61	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Interfaces, 2022, 14, 16703-16717.	4.0	11
62	Biohybrid Nanocellulose–Lysozyme Amyloid Aerogels via Electrostatic Complexation. ACS Omega, 2022, 7, 578-586.	1.6	10
63	Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 2022, 292, 119681.	5.1	10
64	Rheology of cocoa butter. Journal of Food Engineering, 2021, 305, 110598.	2.7	9
65	Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314 1.5	rg&T /Overloc
66	Self-Sensing Cellulose Structures With Design-Controlled Stiffness. IEEE Robotics and Automation Letters, 2021, 6, 4017-4024.	3.3	7
67	Melanized-Cationic Cellulose Nanofiber Foams for Bioinspired Removal of Cationic Dyes. Biomacromolecules, 2021, 22, 4681-4690.	2.6	7
68	[P1.028] Development of Nanocellulose/Polypyrrole Composites Towards Blood Purification. Procedia Engineering, 2012, 44, 733-736.	1.2	5
69	Nanocellulose: Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottomâ€Up Fabrication (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170216.	11.1	4
70	Hierarchical Structure of Cellulose Nanofibril-Based Foams Explored by Multimodal X-ray Scattering. Biomacromolecules, 2022, 23, 676-686.	2.6	4
71	The Salt and Paper Battery; Ultrafast and All-polymer Based. Materials Research Society Symposia Proceedings, 2009, 1197, 60.	0.1	1
72	Long Cycle Life Nanocellulose Polypyrrole Electrodes. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0

#	Article	IF	CITATIONS
73	Assembly, Aggregation and Gelation in Nanocellulose Dispersions. Chimia, 2018, 72, 340-340.	0.3	Ο
74	Cellulose nanofibers doped with conductive nanomaterials for THz applications. , 2021, , .		0
75	Wood $\hat{a} \in$ Base material for Optical Elements for Terahertz Waves?. , 2020, , .		0
76	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding (Small Methods 12/2021). Small Methods, 2021, 5, .	4.6	0