

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492597/publications.pdf Version: 2024-02-01

ΕΛΝ Μ/Π

#	Article	IF	CITATIONS
1	The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications. IEEE Journal of Microwaves, 2021, 1, 101-122.	4.9	312
2	Single-Port Reconfigurable Magneto-Electric Dipole Antenna With Quad-Polarization Diversity. IEEE Transactions on Antennas and Propagation, 2017, 65, 2289-2296.	3.1	66
3	Wideband High-Gain Open Resonator Antenna Using a Spherically Modified, Second-Order Cavity. IEEE Transactions on Antennas and Propagation, 2017, 65, 2112-2116.	3.1	54
4	A Circularly Polarized 1 Bit Electronically Reconfigurable Reflectarray Based on Electromagnetic Element Rotation. IEEE Transactions on Antennas and Propagation, 2021, 69, 5585-5595.	3.1	54
5	Wideband Tri-Polarization Reconfigurable Magneto-Electric Dipole Antenna. IEEE Transactions on Antennas and Propagation, 2017, 65, 1633-1641.	3.1	53
6	SIW Cavity-Fed Filtennas for 5G Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, 2021, 69, 5269-5277.	3.1	51
7	A Reconfigurable Magneto-Electric Dipole Antenna Using Bent Cross-Dipole Feed for Polarization Diversity. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 412-415.	2.4	45
8	Wideband and Low Cross-Polarization Transmitarray Using 1 Bit Magnetoelectric Dipole Elements. IEEE Transactions on Antennas and Propagation, 2021, 69, 2605-2614.	3.1	45
9	Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for <i>Ka</i> -Band 5G Applications. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2038-2042.	2.4	34
10	Circularly Polarized One-Bit Reconfigurable ME-Dipole Reflectarray at X-Band. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 496-500.	2.4	31
11	Circular Polarization and Reconfigurability of Fabry–Pérot Resonator Antenna Through Metamaterial-Loaded Cavity. IEEE Transactions on Antennas and Propagation, 2019, 67, 2196-2208.	3.1	26
12	Wideband and Low-Profile Integrated Dual-Circularly-Polarized Transmit-Arrays Enabled by Antenna-Filter-Antenna Phase Shifting Cells. IEEE Transactions on Antennas and Propagation, 2021, 69, 7462-7475.	3.1	25
13	A Broadband Circularly Polarized Reflectarray With Magneto-Electric Dipole Elements. IEEE Transactions on Antennas and Propagation, 2021, 69, 7005-7010.	3.1	24
14	A Single-Layer Dual-Circularly Polarized SIW-Cavity-Backed Patch Filtenna With Wide Axial-Ratio Bandwidth. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 908-912.	2.4	21
15	Design and Implementation of a Full-Digital Beamforming Array With Nonreciprocal Tx/Rx Beam Patterns. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1978-1982.	2.4	19
16	A Wideband Low-Profile Efficiency-Improved Transmitarray Antenna With Over-1-bit Phase-Shifting Elements. IEEE Access, 2020, 8, 32163-32169.	2.6	14
17	Dual-Wideband Dual-Circularly-Polarized Shared-Aperture Reflectarrays With a Single Functional Substrate for K-/Ka-Band Applications. IEEE Transactions on Antennas and Propagation, 2022, 70, 5404-5417.	3.1	14
18	A Wideband Dual-Polarized Magneto-Electric Dipole Transmitarray With Independent Control of Polarizations. IEEE Transactions on Antennas and Propagation, 2022, 70, 8632-8636.	3.1	14

Fan Wu

#	Article	IF	CITATIONS
19	Sparse Inverse Synthetic Aperture Radar Imaging Using Structured Low-Rank Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	13
20	A Wideband Circularly Polarized Magneto-Electric Dipole Antenna Array for Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, 2022, 70, 3876-3881.	3.1	12
21	A wideband dualâ€polarized magnetoâ€electric dipole antenna for millimeter wave applications. Microwave and Optical Technology Letters, 2021, 63, 1452-1457.	0.9	11
22	Millimeter-Wave ±45° Dual Linearly Polarized End-Fire Phased Array Antenna for 5G/B5G Mobile Terminals. IEEE Transactions on Antennas and Propagation, 2022, 70, 10391-10404.	3.1	9
23	Millimeter-Wave Wideband Endfire Magnetoelectric Dipole Antenna Fed by Substrate Integrated Coaxial Line. IEEE Transactions on Antennas and Propagation, 2022, 70, 2301-2306.	3.1	8
24	A Hybrid-Element Approach to Design Wideband ME-Dipole Transmitarray With Improved Aperture Efficiency. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1338-1342.	2.4	7
25	A Wideband Subwavelength-Thick Circularly Polarized Discrete Lens Using Dielectric-Coated Polarization-Twisting ME-Dipole Elements. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1706-1710.	2.4	6
26	A Millimeter-Wave Substrate Integrated Waveguide H-Plane Horn Antenna With Enhanced Gain and Efficiency. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 769-773.	2.4	6
27	Metasurface-Based Circularly-Polarized Multibeam Reflect-/Transmit-Arrays. , 2020, , .		2
28	Wideband Dual-Circularly-Polarized Reflect-Arrays Based on Dual-Functional-Layer Cells With Berry-Phase Compensation at X-Band. IEEE Transactions on Antennas and Propagation, 2022, 70, 9924-9929.	3.1	2
29	The Use of Magneto-Electric Dipole to Design Wideband Transmitarray Element. , 2020, , .		1
30	Wideband endâ€fire circularly polarised complementary source antenna for millimetreâ€wave applications. IET Microwaves, Antennas and Propagation, 2021, 15, 1936-1944.	0.7	1
31	Mechanically Manipulation of Radiation Bandwidth for Fabry-Perot Resonator Antenna. , 2019, , .		0
32	A wideband Pattern-Reconfigurable Antenna Based on High-Order Magneto-Electric Dipole Concept. , 2020, , .		0
33	Linearly-Polarized and Circularly-Polarized Discrete Lenses for Wideband Applications. , 2021, , .		0
34	Wideband Substrate-Integrated-Coaxial-Line-Fed Magneto-Electric Dipole Antenna with End-Fire Radiation. , 2021, , .		0
35	Recent Developments of Wideband and Multi-Band Dual-Circularly-Polarized Reflect-Arrays. , 2022, , .		0