I Chorkendorff

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8492039/i-chorkendorff-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

218 87 408 49,718 h-index g-index citations papers 7.83 57,009 440 9.1 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
408	Analysis of the Facets of Cu-Based Electrocatalysts in Alkaline Media Using Pb Underpotential Deposition <i>Langmuir</i> , 2022 ,	4	2
407	Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. <i>Electrochemistry Communications</i> , 2022 , 134, 107186	5.1	2
406	Monitoring oxygen production on mass-selected iridium E antalum oxide electrocatalysts. <i>Nature Energy</i> , 2022 , 7, 55-64	62.3	17
405	A spin promotion effect in catalytic ammonia synthesis <i>Nature Communications</i> , 2022 , 13, 2382	17.4	5
404	Oxygen-Enhanced Chemical Stability of Lithium-Mediated Electrochemical Ammonia Synthesis <i>Journal of Physical Chemistry Letters</i> , 2022 , 4605-4611	6.4	4
403	How to extract adsorption energies, adsorbate-adsorbate interaction parameters and saturation coverages from temperature programmed desorption experiments. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 24396-24402	3.6	1
402	Online ElectrochemistryMass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 12745-12753	13.1	4
401	Is There Anything Better than Pt for HER?. ACS Energy Letters, 2021, 6, 1175-1180	20.1	83
400	Semitransparent Selenium Solar Cells as a Top Cell for Tandem Photovoltaics. <i>Solar Rrl</i> , 2021 , 5, 21001	17.1	4
399	The Importance of Potential Control for Accurate Studies of Electrochemical CO Reduction. <i>ACS Energy Letters</i> , 2021 , 6, 1879-1885	20.1	6
398	Tracking oxygen atoms in electrochemical CO oxidation Part I: Oxygen exchange via CO2 hydration. <i>Electrochimica Acta</i> , 2021 , 374, 137842	6.7	3
397	Dynamic Interfacial Reaction Rates from Electrochemistry-Mass Spectrometry. <i>Analytical Chemistry</i> , 2021 , 93, 7022-7028	7.8	2
396	Tracking oxygen atoms in electrochemical CO oxidation - Part II: Lattice oxygen reactivity in oxides of Pt and Ir. <i>Electrochimica Acta</i> , 2021 , 374, 137844	6.7	7
395	Origins of the Instability of Nonprecious Hydrogen Evolution Reaction Catalysts at Open-Circuit Potential. <i>ACS Energy Letters</i> , 2021 , 6, 2268-2274	20.1	12
394	Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119483	21.8	7
393	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. <i>Journal of Catalysis</i> , 2021 , 393, 313-	-3723	10
392	CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. <i>ChemElectroChem</i> , 2021 , 8, 250-256	4.3	4

(2020-2021)

391	Chemisorbed oxygen or surface oxides steer the selectivity in Pd electrocatalytic propene oxidation observed by operando Pd L-edge X-ray absorption spectroscopy. <i>Catalysis Science and Technology</i> , 2021 , 11, 3347-3352	5.5	1
390	Towards understanding of electrolyte degradation in lithium-mediated non-aqueous electrochemical ammonia synthesis with gas chromatography-mass spectrometry <i>RSC Advances</i> , 2021 , 11, 31487-31498	3.7	7
389	Interaction of CO with Gold in an Electrochemical Environment. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 17684-17689	3.8	3
388	Methods for nitrogen activation by reduction and oxidation. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		21
387	Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. <i>Journal of Energy Chemistry</i> , 2021 , 63, 278-278	12	4
386	Preparation of high surface area Cu-Au bimetallic nanostructured materials by co-electrodeposition in a deep eutectic solvent. <i>Electrochimica Acta</i> , 2021 , 139309	6.7	1
385	Electrified methane reforming: Elucidating transient phenomena. <i>Chemical Engineering Journal</i> , 2021 , 425, 131509	14.7	6
384	Enhancement of lithium-mediated ammonia synthesis by addition of oxygen <i>Science</i> , 2021 , 374, 1593-	1 <i>59</i> .7	19
383	Experimental and First-Principles Spectroscopy of CuSrSnS and CuBaSnS Photoabsorbers. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	5
382	Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. <i>ACS Catalysis</i> , 2020 , 10, 6281-6290	13.1	34
381	Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. <i>Nature Catalysis</i> , 2020 , 3, 516-525	36.5	74
380	Optimizing Ni E eta alloys into Ni2FeGa for the Hydrogenation of CO2 into Methanol. <i>ChemCatChem</i> , 2020 , 12, 3265-3273	5.2	7
379	Parallel Evaluation of the Bil3, BiOI, and Ag3Bil6 Layered Photoabsorbers. <i>Chemistry of Materials</i> , 2020 , 32, 3385-3395	9.6	18
378	Fingerprint Voltammograms of Copper Single Crystals under Alkaline Conditions: A Fundamental Mechanistic Analysis. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1450-1455	6.4	23
377	The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts. Journal of the Electrochemical Society, 2020 , 167, 164501	3.9	18
376	Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. <i>Energy and Environmental Science</i> , 2020 , 13, 977-985	35.4	133
375	TaS2 Back Contact Improving Oxide-Converted Cu2BaSnS4 Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1190-1198	6.1	9
374	X-ray Absorption Spectroscopy Investigation of Platinum adolinium Thin Films with Different Stoichiometry for the Oxygen Reduction Reaction. <i>Catalysts</i> , 2020 , 10, 978	4	1

373	Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. <i>Energy and Environmental Science</i> , 2020 , 13, 4291-4300	35.4	50
372	Wireless Photoelectrochemical Water Splitting Using Triple-Junction Solar Cell Protected by TiO2. <i>Cell Reports Physical Science</i> , 2020 , 1, 100261	6.1	4
371	Role of ion-selective membranes in the carbon balance for CO electroreduction gas diffusion electrode reactor designs. <i>Chemical Science</i> , 2020 , 11, 8854-8861	9.4	34
370	Anodic molecular hydrogen formation on Ru and Cu electrodes. <i>Catalysis Science and Technology</i> , 2020 , 10, 6870-6878	5.5	9
369	Assessing the defect tolerance of kesterite-inspired solar absorbers. <i>Energy and Environmental Science</i> , 2020 , 13, 3489-3503	35.4	17
368	Acid-Stable Oxides for Oxygen Electrocatalysis. ACS Energy Letters, 2020, 5, 2905-2908	20.1	34
367	Wide Band Gap Cu2SrSnS4 Solar Cells from Oxide Precursors. ACS Applied Energy Materials, 2019, 2, 73	4 6. 734	413
366	Structure Sensitivity in the Electrocatalytic Reduction of CO with Gold Catalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3774-3778	16.4	62
365	Structure Sensitivity in the Electrocatalytic Reduction of CO2 with Gold Catalysts. <i>Angewandte Chemie</i> , 2019 , 131, 3814-3818	3.6	18
364	Size-Dependence of the Melting Temperature of Individual Au Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1800480	3.1	16
363	Progress and Perspectives of Electrochemical CO Reduction on Copper in Aqueous Electrolyte. <i>Chemical Reviews</i> , 2019 , 119, 7610-7672	68.1	1244
362	Effect of Dissolved Glassware on the Structure-Sensitive Part of the Cu(111) Voltammogram in KOH. <i>ACS Energy Letters</i> , 2019 , 4, 1645-1649	20.1	19
361	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. <i>Nature</i> , 2019 , 570, 504-508	50.4	617
360	Evolution of intermetallic GaPd/SiO catalyst and optimization for methanol synthesis at ambient pressure. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 521-531	7.1	8
359	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. <i>ACS Catalysis</i> , 2019 , 9, 5797-5802	13.1	54
358	ActivityBr Lack ThereofBf RuO2-Based Electrodes in the Electrocatalytic Reduction of CO2. Journal of Physical Chemistry C, 2019 , 123, 17765-17773	3.8	10
357	Electrified methane reforming: A compact approach to greener industrial hydrogen production. <i>Science</i> , 2019 , 364, 756-759	33.3	131
356	Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects. <i>Journal of Catalysis</i> , 2019 , 373, 103-115	7.3	23

(2018-2019)

355	Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 3359-3369	9.6	20
354	Durability Testing of Photoelectrochemical Hydrogen Production under Day/Night Light Cycled Conditions. <i>ChemElectroChem</i> , 2019 , 6, 106-109	4.3	18
353	Analysis of Mass Flows and Membrane Cross-over in CO Reduction at High Current Densities in an MEA-Type Electrolyzer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 41281-41288	9.5	90
352	On the Possibilities and Considerations of Interfacing Ultra-High Vacuum Equipment with an Electrochemical Setup. <i>ChemPhysChem</i> , 2019 , 20, 3024-3029	3.2	5
351	Trace anodic migration of iridium and titanium ions and subsequent cathodic selectivity degradation in acid electrolysis systems. <i>Materials Today Energy</i> , 2019 , 14, 100352	7	3
350	Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium. <i>Energy and Environmental Science</i> , 2019 , 12, 1055-1067	35.4	20
349	Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Letters, 2019, 4, 803-804	20.1	64
348	The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 2019, 4, 2986-2988	20.1	74
347	Supercritical flow synthesis of PtPdFe alloyed nanoparticles with enhanced low-temperature activity and thermal stability for propene oxidation under lean exhaust gas conditions. <i>Catalysis Science and Technology</i> , 2019 , 9, 6691-6699	5.5	1
346	Electrified Methane Reforming: Understanding the Dynamic Interplay. <i>Industrial & Dynamic Interplay</i> . <i>Industrial & Industrial & Indust</i>	3.9	20
345	Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization. <i>Nano Letters</i> , 2018 , 18, 3454-3460	11.5	12
344	Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. <i>Electrochimica Acta</i> , 2018 , 272, 192-202	6.7	41
343	Scalable Synthesis of Carbon-Supported Platinum[lanthanide and Rare-Earth Alloys for Oxygen Reduction. <i>ACS Catalysis</i> , 2018 , 8, 2071-2080	13.1	42
342	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2800-2805	16.4	56
341	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper P latinum(111) Alloy. <i>Angewandte Chemie</i> , 2018 , 130, 2850-2855	3.6	5
340	Electroreduction of CO on Polycrystalline Copper at Low Overpotentials. <i>ACS Energy Letters</i> , 2018 , 3, 634-640	20.1	50
339	Reduced sintering of mass-selected Au clusters on SiO by alloying with Ti: an aberration-corrected STEM and computational study. <i>Nanoscale</i> , 2018 , 10, 2363-2370	7.7	12
338	Ambient Pressure Hydrodesulfurization of Refractory Sulfur Compounds in Highly Sensitive Reactor Platform Coupled to a Time-of-Flight Mass Spectrometer. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1699-1705	3.8	4

337	Corrections to Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization (IACS Catalysis, 2018, 8, 938-938)	13.1	1
336	Selective CO Methanation on Highly Active Ru/TiO2 Catalysts: Identifying the Physical Origin of the Observed Activation/Deactivation and Loss in Selectivity. <i>ACS Catalysis</i> , 2018 , 8, 5399-5414	13.1	45
335	Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. <i>ACS Catalysis</i> , 2018 , 8, 4064-4081	13.1	341
334	Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. <i>Electrochimica Acta</i> , 2018 , 268, 520-530	6.7	26
333	Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 16-26	11.3	5
332	Importance of Surface IrO in Stabilizing RuO for Oxygen Evolution. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 947-955	3.4	58
331	Trends in Activity and Dissolution on RuO2 under Oxygen Evolution Conditions: Particles versus Well-Defined Extended Surfaces. <i>ACS Energy Letters</i> , 2018 , 3, 2045-2051	20.1	77
330	Deposition of methylammonium iodide evaporation - combined kinetic and mass spectrometric study <i>RSC Advances</i> , 2018 , 8, 29899-29908	3.7	26
329	Operando XAS Study of the Surface Oxidation State on a Monolayer IrO on RuO and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 878-887	3.4	45
328	Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. <i>Nature Catalysis</i> , 2018 , 1, 820-829	36.5	212
327	Polycrystalline and Single-Crystal Cu Electrodes: Influence of Experimental Conditions on the Electrochemical Properties in Alkaline Media. <i>Chemistry - A European Journal</i> , 2018 , 24, 17743-17755	4.8	35
326	Active-Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study. <i>Chemistry - A European Journal</i> , 2018 , 24, 12280-12290	4.8	10
325	Combining theory and experiment in electrocatalysis: Insights into materials design. <i>Science</i> , 2017 , 355,	33.3	5239
324	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. <i>Electrochimica Acta</i> , 2017 , 230, 22-28	6.7	32
323	Strategies for stable water splitting via protected photoelectrodes. <i>Chemical Society Reviews</i> , 2017 , 46, 1933-1954	58.5	331
322	New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals. <i>Electrocatalysis</i> , 2017 , 8, 594-604	2.7	18
321	Bottom-Up Design of a Copper-Ruthenium Nanoparticulate Catalyst for Low-Temperature Ammonia Oxidation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8711-8715	16.4	12
320	Deactivating Carbon Formation on a Ni/Al2O3 Catalyst under Methanation Conditions. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 15556-15564	3.8	19

(2016-2017)

319	High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700311	4.6	25
318	Bottom-Up Design of a Copper R uthenium Nanoparticulate Catalyst for Low-Temperature Ammonia Oxidation. <i>Angewandte Chemie</i> , 2017 , 129, 8837-8841	3.6	7
317	Quantification of liquid products from the electroreduction of CO2 and CO using static headspace-gas chromatography and nuclear magnetic resonance spectroscopy. <i>Catalysis Today</i> , 2017 , 288, 54-62	5.3	10
316	Electrochemical Ammonia SynthesisThe Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709	13.1	442
315	1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method. <i>Journal of Synchrotron Radiation</i> , 2017 , 24, 296-301	2.4	7
314	Comment on "Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts". <i>Science</i> , 2017 , 357,	33.3	52
313	Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. <i>Energy and Environmental Science</i> , 2017 , 10, 2626-2637	35.4	185
312	Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3. <i>Energy and Environmental Science</i> , 2017 , 10, 2579-2593	35.4	61
311	Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction: fabrication and rotating disk electrode measurements. <i>Electrochimica Acta</i> , 2017 , 247, 708-721	6.7	29
310	Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction. <i>Catalysis Today</i> , 2017 , 290, 59-64	5.3	29
309	Investigating the coverage dependent behaviour of CO on Gd/Pt(111). <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 29732-29739	3.6	4
308	Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. <i>Nano Energy</i> , 2016 , 29, 249-260	17.1	40
307	H2/D2 exchange reaction on mono-disperse Pt clusters: enhanced activity from minute O2 concentrations. <i>Catalysis Science and Technology</i> , 2016 , 6, 6893-6900	5.5	8
306	Back-Illuminated Si-Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer. <i>ChemElectroChem</i> , 2016 , 3, 1546-1552	4.3	19
305	Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles. <i>Catalysis Today</i> , 2016 , 262, 57-64	5.3	26
304	Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 144, 758-765	6.4	45
303	Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. <i>Surface Science</i> , 2016 , 648, 278-283	1.8	11
302	PtxGd alloy formation on Pt(111): Preparation and structural characterization. <i>Surface Science</i> , 2016 , 652, 114-122	1.8	15

301	Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering. <i>Journal of Synchrotron Radiation</i> , 2016 , 23, 455-63	2.4	1
300	Identification of core-shell structures in high active Pt-alloy catalysts for oxygen reduction by electron spectroscopy 2016 , 173-174		
299	Electron Microscopy of Copper Nanoparticle Growth 2016 , 43-44		
298	Toward sustainable fuel cells. <i>Science</i> , 2016 , 354, 1378-1379	33.3	281
297	Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. <i>Science</i> , 2016 , 352, 73-6	33.3	575
296	Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14301-6	9.5	23
295	Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. <i>Science</i> , 2016 , 352, 969-74	33.3	397
294	Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3433-42	16.4	40
293	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. <i>Angewandte Chemie</i> , 2016 , 128, 1472-1476	3.6	31
292	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1450-4	16.4	134
291	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Aultd alloys. <i>Journal of Catalysis</i> , 2016 , 343, 215-231	7-3	96
290	Back-Illuminated Si-Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer. <i>ChemElectroChem</i> , 2016 , 3, 1517-1517	4.3	7
289	Synthesis and characterization of FeNi/?-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition. <i>Applied Catalysis A: General</i> , 2015 , 505, 548-556	5.1	16
288	Physical properties of the GaPd2 intermetallic catalyst in bulk and nanoparticle morphology. <i>Intermetallics</i> , 2015 , 67, 35-46	3.5	5
287	Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. Journal of the American Chemical Society, 2015 , 137, 9808-11	16.4	389
286	Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g). <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1679-83	6.4	56
285	Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). <i>Electrochimica Acta</i> , 2015 , 179, 647-657	6.7	78
284	Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. Journal of Physical Chemistry Letters, 2015 , 6, 951-7	6.4	526

(2015-2015)

283	Direct observation of the dealloying process of a platinum-yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 28121-8	3.6	38
282	Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting. <i>ACS Catalysis</i> , 2015 , 5, 5530-5539	13.1	36
281	Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of MetalBupport Interactions. <i>ACS Catalysis</i> , 2015 , 5, 6753-6763	13.1	88
280	Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. <i>Energy and Environmental Science</i> , 2015 , 8, 2991-2999	35.4	127
279	Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization. <i>ACS Catalysis</i> , 2015 , 5, 5827-5836	13.1	108
278	SOLAR FUELS. A quick look at how photoelectrodes work. <i>Science</i> , 2015 , 350, 1030-1	33.3	7
277	Reduction of a Ni/Spinel Catalyst for Methane Reforming. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1424-1432	3.8	9
276	Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution. <i>Energy and Environmental Science</i> , 2015 , 8, 650-660	35.4	63
275	On the stability of copper overlayers on Au(1 1 1) and Au(1 0 0) electrodes under low potential conditions and in the presence on CO and CO2. <i>Surface Science</i> , 2015 , 631, 155-164	1.8	11
274	Oxygen evolution on well-characterized mass-selected Ru and RuO nanoparticles. <i>Chemical Science</i> , 2015 , 6, 190-196	9.4	248
273	Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides. <i>ChemCatChem</i> , 2015 , 7, 149-154	5.2	99
272	Removal of low concentration contaminant species using photocatalysis: Elimination of ethene to sub-ppm levels with and without water vapor present. <i>Chemical Engineering Journal</i> , 2015 , 262, 648-657	7 ^{14.7}	14
271	Fast and sensitive method for detecting volatile species in liquids. <i>Review of Scientific Instruments</i> , 2015 , 86, 075006	1.7	18
270	Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2. <i>Advanced Energy Materials</i> , 2015 , 5, 1500991	21.8	131
269	Determination of CoreBhell Structures in Pd-Hg Nanoparticles by STEM-EDX. <i>ChemCatChem</i> , 2015 , 7, 3748-3752	5.2	6
268	The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. <i>Journal of Catalysis</i> , 2015 , 328, 297-307	7.3	68
267	Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15019-15027	3.8	73
266	Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy. <i>Catalysis Today</i> , 2015 , 244, 130-135	5.3	6

265	Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions. <i>Journal of Physical Chemistry C</i> , 2015 , 150122080137001	3.8	38
264	Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. <i>Nature Chemistry</i> , 2014 , 6, 32	0-417.6	689
263	Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5941-5	16.4	187
262	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). <i>Journal of Catalysis</i> , 2014 , 309, 397-407	7-3	46
261	Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. <i>Journal of Catalysis</i> , 2014 , 320, 77-88	7.3	81
260	Formation of a ptl heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6847-6853	13	66
259	Towards the elucidation of the high oxygen electroreduction activity of PtxY: surface science and electrochemical studies of Y/Pt(111). <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13718-25	3.6	25
258	Enhanced activity and stability of PtIIa and PtIIe alloys for oxygen electroreduction: the elucidation of the active surface phase. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4234	13	80
257	Exploring the phase space of time of flight mass selected Pt(x)Y nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26506-13	3.6	18
256	In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution. <i>Microscopy (Oxford, England)</i> , 2014 , 63, 397-401	1.3	6
255	Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3456-61	6.4	88
254	Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. <i>Nature Chemistry</i> , 2014 , 6, 732-8	17.6	234
253	Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1271-5	3.6	27
252	Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction. <i>Topics in Catalysis</i> , 2014 , 57, 245-254	2.3	36
251	Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1948-52	6.4	84
250	Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. <i>Nano Letters</i> , 2014 , 14, 1603-8	11.5	352
249	2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. <i>Energy and Environmental Science</i> , 2014 , 7, 2397-2413	35.4	112
248	Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst. <i>Angewandte Chemie</i> , 2014 , 126, 6051-6055	3.6	54

247	Controlled environment specimen transfer. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1038-45	0.5	2
246	Mo3S4Clusters as an Effective H2Evolution Catalyst on Protected Si Photocathodes. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H722-H724	3.9	20
245	Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. <i>ChemElectroChem</i> , 2014 , 1, 2075-2081	4.3	229
244	Morphology of Ruthenium Particles for Methanation under Reactive Conditions. <i>Microscopy and Microanalysis</i> , 2014 , 20, 416-417	0.5	
243	An open-source data storage and visualization back end for experimental data. <i>Journal of the Association for Laboratory Automation</i> , 2014 , 19, 183-90		2
242	Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. <i>Journal of Catalysis</i> , 2013 , 307, 214-221	7.3	65
241	Light-Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope. <i>ChemCatChem</i> , 2013 , 5, 2667-2672	5.2	18
240	MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20000-4	3.6	79
239	High purity H2/H2O/Ni/SZ electrodes at 500°C. Solid State Ionics, 2013, 234, 11-18	3.3	2
238	Enabling direct H2O2 production through rational electrocatalyst design. <i>Nature Materials</i> , 2013 , 12, 1137-43	27	649
237	Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2. Journal of Materials Chemistry A, 2013 , 1, 15089		45
		13	-1 J
236	Methanation on mass-selected Ru nanoparticles on a planar SiO2 model support: The importance of under-coordinated sites. <i>Journal of Catalysis</i> , 2013 , 308, 282-290	7.3	19
236			
	of under-coordinated sites. <i>Journal of Catalysis</i> , 2013 , 308, 282-290 CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211).	7.3	19
235	of under-coordinated sites. <i>Journal of Catalysis</i> , 2013 , 308, 282-290 CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20500-20508 Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at	7.3	19
²³⁵	of under-coordinated sites. <i>Journal of Catalysis</i> , 2013 , 308, 282-290 CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20500-20508 Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at atmospheric pressure. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2698-702 Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2	7·3 3.8 3.6	19 106 13 95
235 234 233	of under-coordinated sites. <i>Journal of Catalysis</i> , 2013 , 308, 282-290 CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20500-20508 Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at atmospheric pressure. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2698-702 Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution. <i>RSC Advances</i> , 2013 , 3, 25902 Layered nanojunctions for hydrogen-evolution catalysis. <i>Angewandte Chemie - International Edition</i> ,	7·3 3.8 3.6 3·7	19 106 13 95

229	Activity and Selectivity for O2 Reduction to H2O2 on Transition Metal Surfaces. <i>ECS Transactions</i> , 2013 , 58, 53-62	1	9
228	A transparent Pyrex Freactor for combined in situ optical characterization and photocatalytic reactivity measurements. <i>Review of Scientific Instruments</i> , 2013 , 84, 103910	1.7	5
227	Layered Nanojunctions for Hydrogen-Evolution Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3709-3713	3.6	99
226	A generic model for photocatalytic activity as a function of catalyst thickness. <i>Journal of Catalysis</i> , 2012 , 289, 62-72	7.3	18
225	Quenching of TiO2 photo catalysis by silver nanoparticles. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2012 , 230, 10-14	4.7	10
224	Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. <i>Applied Catalysis A: General</i> , 2012 , 447-448, 22-31	5.1	52
223	The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 76-81	3.6	485
222	Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near-Surface Alloys of Cu/Pt(111). <i>Angewandte Chemie</i> , 2012 , 124, 12015-12018	3.6	13
221	Design of an active site towards optimal electrocatalysis: overlayers, surface alloys and near-surface alloys of Cu/Pt(111). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11845-8	16.4	89
220	Probing the active sites for CO dissociation on ruthenium nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8005-12	3.6	21
219	A cell for the controllable thermal treatment and electrochemical characterisation of single crystal alloy electrodes. <i>Electrochemistry Communications</i> , 2012 , 23, 33-36	5.1	24
218	Molybdenum sulfides Efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. <i>Energy and Environmental Science</i> , 2012 , 5, 5577	35.4	1094
217	Structural Modification of Platinum Model Systems under High Pressure CO Annealing. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15353-15360	3.8	15
216	Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reaction. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5773-5780	3.8	8
215	H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG. <i>Surface Science</i> , 2012 , 606, 263-272	1.8	13
214	High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors. <i>Review of Scientific Instruments</i> , 2012 , 83, 075105	1.7	4
213	Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16476-9	16.4	185
212	Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis. <i>Applied Catalysis A: General</i> , 2012 , 433-434, 243-250	5.1	12

211	Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a Freactor. <i>Journal of Catalysis</i> , 2012 , 292, 26-31	7.3	38
210	The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum. <i>Journal of Power Sources</i> , 2012 , 220, 205-210	8.9	22
209	Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n+p-Silicon Photocathode. <i>Angewandte Chemie</i> , 2012 , 124, 9262-9265	3.6	32
208	Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9128-31	16.4	270
207	Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions. <i>Electrochimica Acta</i> , 2012 , 82, 517-523	6.7	25
206	Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5646-5653	3.8	44
205	New cubic perovskites for one- and two-photon water splitting using the computational materials repository. <i>Energy and Environmental Science</i> , 2012 , 5, 9034	35.4	178
204	Dynamical Properties of a Ru/MgAl2O4 Catalyst during Reduction and Dry Methane Reforming. Journal of Physical Chemistry C, 2012 , 116, 21407-21415	3.8	68
203	Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. <i>Energy and Environmental Science</i> , 2012 , 5, 6744	35.4	852
202	Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters. <i>Journal of Photonics for Energy</i> , 2012 , 2, 026001	1.2	16
201	The Effect of Size on the Oxygen Electroreduction Activity of Mass-Selected Platinum Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 4719-4721	3.6	40
200	The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4641-3	16.4	277
199	Oxygen Electroreduction Activity and X-Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys. <i>ChemCatChem</i> , 2012 , 4, 341-349	5.2	71
198	A general route for RuO2 deposition on metal oxides from RuO4. <i>Chemical Communications</i> , 2012 , 48, 967-9	5.8	27
197	Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. <i>Chemical Communications</i> , 2011 , 47, 2613-5	5.8	37
196	Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5485-91	16.4	385
195	Hydrogen evolution on Au(111) covered with submonolayers of Pd. <i>Physical Review B</i> , 2011 , 84,	3.3	43
194	Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. <i>Nature Materials</i> , 2011 , 10, 434-8	27	556

193	A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 222, 25	4·7 58-262	32
192	Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. <i>Journal of Catalysis</i> , 2011 , 281, 14	7- 1/ 5 ₃ 5	157
191	The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. <i>Langmuir</i> , 2011 , 27, 2058-66	4	157
190	Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia. <i>Solid State Ionics</i> , 2011 , 190, 82-87	3.3	3
189	Minimierung des Platinbedarfs bei wasserstoffentwickelnden Elektroden. <i>Angewandte Chemie</i> , 2011 , 123, 1512-1513	3.6	7
188	Minimizing the use of platinum in hydrogen-evolving electrodes. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1476-7	16.4	134
187	Gas phase photocatalytic water splitting with Rh2DCryO3/GaN:ZnO in Freactors. <i>Energy and Environmental Science</i> , 2011 , 4, 2937	35.4	53
186	Is the methanation reaction over Ru single crystals structure dependent?. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4486-93	3.6	18
185	Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10333-41	3.6	11
184	H2 Splitting on Pt/Ru Alloys Supported on Sputtered HOPG. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25351-25358	3.8	5
183	Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction. <i>Journal of Power Sources</i> , 2011 , 196, 6085-6091	8.9	85
182	Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures. <i>Solid State Ionics</i> , 2011 , 190, 60-66	3.3	8
181	Note: simple means for selective removal of the 365 nm line from the Hg spectrum using Dy. <i>Review of Scientific Instruments</i> , 2011 , 82, 096102	1.7	4
180	Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution 2011 ,		1
179	Controlled Directional Growth of TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2010 , 157, E69	3.9	14
178	Note: Anodic bonding with cooling of heat-sensitive areas. <i>Review of Scientific Instruments</i> , 2010 , 81, 016111	1.7	19
177	Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions. Journal of Physics Condensed Matter, 2010 , 22, 084010	1.8	2
176	Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in EReactors. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11162-11168	3.8	22

175	The effect of atmospheric corona treatment on AA1050 aluminium. Corrosion Science, 2010, 52, 2155-21	I 6 38	10
174	Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7968-75	16.4	328
173	Screening of electrocatalytic materials for hydrogen evolution. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10536-41	3.6	68
172	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution 2010 , 280-284		16
171	Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode. <i>Chemical Engineering Journal</i> , 2010 , 162, 314-321	14.7	7
170	Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst. <i>Catalysis Letters</i> , 2010 , 140, 90-97	2.8	24
169	The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 1249-1262	2.3	47
168	Self Blocking of CO Dissociation on a Stepped Ruthenium Surface. <i>Topics in Catalysis</i> , 2010 , 53, 357-364	2.3	42
167	Support effects and catalytic trends for water gas shift activity of transition metals. <i>Journal of Molecular Catalysis A</i> , 2010 , 315, 163-170		25
166	Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surface Science, 2010 , 604, 718-729	1.8	132
165	On the stability of the CO adsorption-induced and self-organized CuPt surface alloy. <i>Surface Science</i> , 2010 , 604, 1733-1736	1.8	10
164	Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst. <i>Applied Catalysis A: General</i> , 2010 , 377, 158-166	5.1	53
163	Gas-phase photocatalysis in Freactors. Chemical Engineering Journal, 2010, 160, 738-741	14.7	28
162	Combinedin situsmall- and wide-angle X-ray scattering studies of TiO2nanoparticle annealing to 1023 K. <i>Journal of Applied Crystallography</i> , 2010 , 43, 1400-1408	3.8	18
161	Subsurface excitations in a metal. <i>Physical Review B</i> , 2009 , 80,	3.3	5
160	Highly sensitive silicon microreactor for catalyst testing. <i>Review of Scientific Instruments</i> , 2009 , 80, 1241	0:1 ₇	40
159	Electron emission from ultralarge area metal-oxide-semiconductor electron emitters. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 562		6
158	Transient behavior of Cu/ZnO-based methanol synthesis catalysts. <i>Journal of Catalysis</i> , 2009 , 262, 65-72	7.3	97

157	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. <i>Nature Chemistry</i> , 2009 , 1, 552-6	17.6	2287
156	Combined spectroscopy and microscopy of supported MoS2 nanoparticles. <i>Surface Science</i> , 2009 , 603, 1182-1189	1.8	29
155	A comparative STM study of Ru nanoparticles deposited on HOPG by mass-selected gas aggregation versus thermal evaporation. <i>Surface Science</i> , 2009 , 603, 3420-3430	1.8	24
154	Batch chemical microreactors: Reversible, in situ UHV sealing of a microcavity. <i>Microelectronic Engineering</i> , 2009 , 86, 1389-1392	2.5	
153	Effect of alloying on carbon formation during ethane dehydrogenation. <i>Applied Catalysis A: General</i> , 2009 , 358, 269-278	5.1	29
152	Electron emission from MOS electron emitters with clean and cesium covered gold surface. <i>Applied Surface Science</i> , 2009 , 255, 7657-7662	6.7	3
151	Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B273	3.9	39
150	Adsorption-driven surface segregation of the less reactive alloy component. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2404-7	16.4	142
149	Hydrogen evolution on nano-particulate transition metal sulfides. <i>Faraday Discussions</i> , 2008 , 140, 219-31; discussion 297-317	3.6	672
148	Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. <i>Journal of Catalysis</i> , 2008 , 255, 6-19	7.3	365
147	First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. <i>Journal of Catalysis</i> , 2008 , 259, 147-160	7.3	488
146	Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17492-17498	3.8	200
145	The nature of the active site in heterogeneous metal catalysis. Chemical Society Reviews, 2008, 37, 216	3-₹8 .5	553
144	Properties of Hydrogen 2008 , 71-147		3
143	The sticking probability for H2 on some transition metals at a hydrogen pressure of 1 bar. <i>Journal of Chemical Physics</i> , 2008 , 128, 034706	3.9	38
142	Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111). <i>Surface Science</i> , 2008 , 602, 2783-2788	1.8	11
141	Interaction of carbon dioxide with Cu overlayers on Pt(111). Surface Science, 2008, 602, 702-711	1.8	40
140	CO dissociation on Ni: The effect of steps and of nickel carbonyl. Surface Science, 2008, 602, 733-743	1.8	62

139	The sticking probability for H2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar. <i>Surface Science</i> , 2008 , 602, 1863-1870	1.8	18
138	Hydrogenation properties of catalyzed and non-catalyzed magnesium films. <i>Surface Science</i> , 2007 , 601, 1862-1869	1.8	21
137	Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. <i>Science</i> , 2007 , 317, 100-2	33.3	4319
136	The sticking probability of hydrogen on Ni, Pd and Pt at a hydrogen pressure of 1 bar. <i>Topics in Catalysis</i> , 2007 , 46, 175-187	2.3	23
135	Decomposition of lithium amide and imide films on nickel. Surface Science, 2007, 601, 830-836	1.8	5
134	Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: In situ and ex situ characterizations. <i>Journal of Power Sources</i> , 2007 , 173, 110-12	o ^{8.9}	9
133	Ultralarge area MOS tunnel devices for electron emission. <i>Physical Review B</i> , 2007 , 76,	3.3	12
132	Effect of oxygen on the hydrogenation properties of magnesium films. Surface Science, 2006, 600, 1363	-1.368	27
131	Adsorption of hydrogen on clean and modified magnesium films. <i>Physical Review B</i> , 2006 , 74,	3.3	31
130	Assembled monolayers of Mo3S4(4+) clusters on well-defined surfaces. <i>Dalton Transactions</i> , 2006 , 3985	5-49.63	28
129	Hierarchical self-assembly of designed 2 x 2-alpha-helix bundle proteins on Au(111) surfaces. <i>Langmuir</i> , 2006 , 22, 6661-7	4	16
128	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. <i>Nature Materials</i> , 2006 , 5, 909-13	27	2624
127	Design parameters for measurements of local catalytic activity on surfaces. <i>Applied Surface Science</i> , 2006 , 252, 3673-3685	6.7	13
126	Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation. <i>Journal of Power Sources</i> , 2006 , 162, 1010-1022	8.9	46
125	Growth and decomposition of lithium and lithium hydride on nickel. Surface Science, 2006, 600, 1468-14	7:4 8	16
124	Adsorption and surface dynamics of short DNA and LNA oligonucleotides on single-crystal Au(111) electrode surfaces. <i>Surface Science</i> , 2006 , 600, 122-127	1.8	9
123	Dehydrogenation of Light Alkanes Over Rhenium Catalysts on Conventional and Mesoporous MFI Supports. <i>Catalysis Letters</i> , 2006 , 109, 153-156	2.8	10
122	Isotopic exchange of CO adsorbed on Pt(111). Journal of Physical Chemistry B, 2005, 109, 10285-90	3.4	25

121	Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5308-9	16.4	2895
12 0	Energetic mapping of Ni catalysts by detailed kinetic modeling. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 2360-70	3.4	14
119	Investigation of the role of oxygen induced segregation of Cu during Cu2O formation on Cu{1 0 0}, Ag/Cu{1 0 0} and Cu(Ag) alloy. <i>Surface Science</i> , 2005 , 583, 157-165	1.8	49
118	Search for new catalysts from a fundamental basis. <i>Catalysis Today</i> , 2005 , 100, 191-197	5.3	11
117	Trends in low-temperature watergas shift reactivity on transition metals. <i>Journal of Catalysis</i> , 2005 , 229, 265-275	7.3	194
116	The Ligand Effect: CO Desorption from Pt/Ru Catalysts. <i>Fuel Cells</i> , 2005 , 5, 429-435	2.9	58
115	Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. <i>ChemInform</i> , 2005 , 36, no		8
114	Growth and hydrogenation of ultra-thin Mg films on Mo(111). Surface Science, 2005, 584, 17-26	1.8	18
113	Methane activation on Ni(1 1 1): Effects of poisons and step defects. Surface Science, 2005, 590, 127-13	71.8	211
112	Mixed Phase Pt-Ru Catalyst for Direct Methanol Fuel Cell Anode by Flame Aerosol Synthesis. Journal of the Electrochemical Society, 2005 , 152, A2357	3.9	21
111	Combined high-pressure cellultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry. <i>Review of Scientific Instruments</i> , 2004 , 75, 2082-2093	1.7	33
110	Thiol- and disulfide-modified oligonucleotide monolayer structures on polycrystalline and single-crystal Au(111) surfaces. <i>Journal of Solid State Electrochemistry</i> , 2004 , 8, 474-481	2.6	33
109	CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts. <i>Fuel Cells</i> , 2004 , 4, 309-319	2.9	42
108	2003,		435
107	Methanol Synthesis on Potassium-Modified Cu(100) from CO + H2 and CO + CO2 + H2. <i>Topics in Catalysis</i> , 2003 , 22, 151-160	2.3	23
106	Ammonia synthesis with barium-promoted ironflobalt alloys supported on carbon. <i>Journal of Catalysis</i> , 2003 , 214, 327-335	7.3	104
105	Effects of steps and defects on O 2 dissociation on clean and modified Cu(1 0 0). <i>Surface Science</i> , 2003 , 538, 233-239	1.8	16
104	Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces. <i>Surface Science</i> , 2003 , 543, 207-218	1.8	8

103	Effect of impurities on structural and electrochemical properties of the NiMSZ interface. <i>Solid State Ionics</i> , 2003 , 160, 27-37	3.3	63
102	Adsorption and Interfacial Electron Transfer of SaccharomycesCerevisiae Yeast Cytochrome c Monolayers on Au(111) Electrodes. <i>Langmuir</i> , 2003 , 19, 3419-3427	4	55
101	Monolayer assemblies of a de novo designed 4-alpha-helix bundle carboprotein and its sulfur anchor fragment on Au(111) surfaces addressed by voltammetry and in situ scanning tunneling microscopy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 94-104	16.4	42
100	The initial behaviour of freshly etched copper in moderately acid, aerated chloride solutions. <i>Electrochimica Acta</i> , 2002 , 47, 4279-4290	6.7	22
99	New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. <i>Chemical Communications</i> , 2002 , 1206-7	5.8	44
98	Dissociation of CH4 on Ni(111) and Ru(0001). Surface Science, 2002, 497, 183-193	1.8	90
97	Microstructural and chemical changes at the Ni/YSZ interface. Solid State Ionics, 2001, 144, 197-209	3.3	57
96	Improved Properties of the Catalytic Model System Ni/Ru(0001). Catalysis Letters, 2001, 77, 207-213	2.8	15
95	Catalyst dynamics: consequences for classical kinetic descriptions of reactors. <i>Chemical Engineering Journal</i> , 2001 , 82, 219-230	14.7	9
94	N2 dissociation on Fe(110) and Fe/Ru(0001): what is the role of steps?. Surface Science, 2001 , 491, 183-	1948	55
93	Molecular beam study of N2 dissociation on Ru(0001). Physical Chemistry Chemical Physics, 2001, 3, 200	7 ₃ 26011	29
92	On the chemical nature of boundary lubrication of stainless steel by chlorine- and sulfur-containing EP-additives. <i>Wear</i> , 2000 , 246, 98-105	3.5	15
91	Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. <i>Journal of Molecular Catalysis A</i> , 2000 , 163, 19-26		276
90	Methanol synthesis from CO2, CO and H2 over Cu(1 0 0) and Cu(1 0 0) modified by Ni and Co. <i>Applied Catalysis A: General</i> , 2000 , 191, 97-109	5.1	87
89	Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. <i>Journal of Catalysis</i> , 2000 , 192, 391-399	7.3	110
88	Dissociative adsorption of N on ru(0001): A surface reaction totally dominated by steps. <i>Journal of Catalysis</i> , 2000 , 192, 381-390	7.3	150
87	Molecular Monolayers and Interfacial Electron Transfer of Pseudomonas aeruginosa Azurin on Au(111). <i>Journal of the American Chemical Society</i> , 2000 , 122, 4047-4055	16.4	233
86	Dissociative sticking of CH4 on Ru(0001). <i>Journal of Chemical Physics</i> , 1999 , 110, 2637-2642	3.9	39

85	From fundamental studies of reactivity on single crystals to the design of catalysts. <i>Surface Science Reports</i> , 1999 , 35, 163-222	12.9	185
84	Methanol Synthesis from CO2, CO, and H2over Cu(100) and Ni/Cu(100). <i>Journal of Catalysis</i> , 1999 , 181, 271-279	7.3	99
83	Chemisorption of Methane on Ni(100) and Ni(111) Surfaces with Preadsorbed Potassium. <i>Journal of Catalysis</i> , 1999 , 187, 238-244	7.3	86
82	Role of Steps in N2 Activation on Ru(0001). <i>Physical Review Letters</i> , 1999 , 83, 1814-1817	7.4	597
81	Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100). <i>Catalysis Letters</i> , 1998 , 54, 171-176	2.8	70
80	Enhanced reactivity of pseudomorphic Co on Cu(111). Catalysis Letters, 1998, 52, 1-5	2.8	3
79	The Synthesis of Ammonia over a Ruthenium Single Crystal. <i>Journal of Catalysis</i> , 1998 , 178, 679-686	7.3	60
78	Mechanochemical Synthesis of FeB Materials. <i>Journal of Solid State Chemistry</i> , 1998 , 138, 114-125	3.3	54
77	Design of a surface alloy catalyst for steam reforming. <i>Science</i> , 1998 , 279, 1913-5	33.3	852
76	Increased dissociation probability of CH4 on Co/Cu(111). Surface Science, 1998, 405, 62-73	1.8	43
75	The Discosiative Chemicaration of Nitrogon on Iron/111) at Floyated Drassures. Zoitachrift Fus		
75	The Dissociative Chemisorption of Nitrogen on Iron(111) at Elevated Pressures. <i>Zeitschrift Fur Physikalische Chemie</i> , 1997 , 198, 123-134	3.1	10
73		3.1	10
	Physikalische Chemie, 1997 , 198, 123-134 Nitrogen chemisorption on ⊞e nanoparticles studied by in situ M⊞sbauer spectroscopy.	7.3	
74	Physikalische Chemie, 1997, 198, 123-134 Nitrogen chemisorption on Fe nanoparticles studied by in situ MBsbauer spectroscopy. Zeitschrift FI Physik D-Atoms Molecules and Clusters, 1997, 40, 152-154 The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures. Journal		4
74 73	Physikalische Chemie, 1997, 198, 123-134 Nitrogen chemisorption on ⊞e nanoparticles studied by in situ MBsbauer spectroscopy. Zeitschrift F□ Physik D-Atoms Molecules and Clusters, 1997, 40, 152-154 The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures. Journal of Catalysis, 1997, 168, 217-234		4
74 73 72	Physikalische Chemie, 1997, 198, 123-134 Nitrogen chemisorption on ⊞e nanoparticles studied by in situ MBsbauer spectroscopy. Zeitschrift F□ Physik D-Atoms Molecules and Clusters, 1997, 40, 152-154 The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures. Journal of Catalysis, 1997, 168, 217-234 Nitrogen chemisorption on ⊞e nanoparticles studied by in situ MBsbauer spectroscopy 1997, 152-154 Improved current transport properties of post annealed Y1Ba2Cu3O7□ thin films using Ag doping.	7-3	23
74 73 72 71	Nitrogen chemisorption on ⊞e nanoparticles studied by in situ MBsbauer spectroscopy. Zeitschrift F□ Physik D-Atoms Molecules and Clusters, 1997, 40, 152-154 The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures. Journal of Catalysis, 1997, 168, 217-234 Nitrogen chemisorption on ⊞e nanoparticles studied by in situ MBsbauer spectroscopy 1997, 152-154 Improved current transport properties of post annealed Y1Ba2Cu3O7☑ thin films using Ag doping. Journal of Applied Physics, 1996, 79, 7062-7068 A Microkinetic Analysis of the Water©as Shift Reaction under Industrial Conditions. Journal of	7.3	23

67	Adhesion of ceramics to Inconel 600 under various chemical conditions. <i>Surface and Interface Analysis</i> , 1995 , 23, 779-784	1.5	1
66	Activated dissociative chemisorption of methane on Ni(100): a direct mechanism under thermal conditions?. <i>Catalysis Letters</i> , 1995 , 32, 15-30	2.8	77
65	Response to Comment on Enhanced JcB of YBa2Cu3O7MAg ex situ annealed coevaporated films on LaAlO3 (100) substratesMAppl. Phys. Lett. 67, 3650 (1995)]. <i>Applied Physics Letters</i> , 1995 , 67, 3652-3652	3.4	1
64	H2S interaction with Cu(100)-(2 sqrt 2 x sqrt 2)R45 degrees-O: Formation of a metastable 05 52 -sulfur surface reconstruction. <i>Physical Review B</i> , 1995 , 52, 2076-2082	3.3	3
63	Molecular beam study of dissociative sticking of methane on Ni(100). <i>Journal of Chemical Physics</i> , 1995 , 102, 8255-8263	3.9	156
62	Is the observed hydrogenation of formate the rate-limiting step in methanol synthesis?. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 1267		33
61	Scanning-tunneling-microscopy studies of the S-induced reconstruction of Cu(100). <i>Physical Review B</i> , 1994 , 50, 8798-8806	3.3	48
60	Enhanced JcB of YBa2Cu3O7MAg ex situ annealed coevaporated films on LaAlO3 (100) substrates. <i>Applied Physics Letters</i> , 1994 , 65, 2350-2352	3.4	5
59	AES and SAM studies of oxide formation on Inconel 600 at high temperatures. <i>Surface and Interface Analysis</i> , 1994 , 22, 441-444	1.5	11
58	Schottky barrier inhomogeneities in Au-Ni and Au-Cr contacts to InP-ohmic contact applications. <i>Applied Surface Science</i> , 1994 , 74, 287-295	6.7	9
57	Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catalysis Letters, 1994, 26, 37	3-23 8 1	203
56	A corrosion study of laser-cut edges of aluminium and Al-3Mg alloy using CMT (corrosion measurement by titration) and EC (electrochemical) measurements. <i>Corrosion Science</i> , 1994 , 36, 759-77	,1 ^{6.8}	10
55	Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surface Science, 1994, 318, 267-280	1.8	132
54	Advanced surface analysis on high-pressure CO 2 laser cut test pieces in pure and alloyed aluminum 1994 ,		2
53	Interaction of hydrogen with carbidic carbon on Ni(100). Surface Science, 1993, 293, 133-144	1.8	15
52	Dissociative adsorption of hydrogen on Cu(100) at low temperatures. <i>Surface Science</i> , 1993 , 287-288, 79-83	1.8	56
51			
	The stabilization of adsorbed carbon dioxide by formate on Cu(100). Surface Science, 1993, 287-288, 20	8±281	7

49	Transport properties of low-resistance ohmic contacts to InP. <i>Thin Solid Films</i> , 1993 , 232, 215-227	2.2	18
48	Mobility and oxidation of boron in Fe?B and Fe?Ni?B glasses. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 76, 99-100	1.2	2
47	Carbon dioxide chemistry on Cu(100). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1992 , 10, 2570-2575	2.9	15
46	Synthesis and hydrogenation of formate on Cu(100) at high pressures. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1992 , 10, 2277-2281	2.9	30
45	The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). <i>Surface Science</i> , 1992 , 264, 95-102	1.8	70
44	Formate synthesis on Cu(100). Surface Science, 1992 , 261, 191-206	1.8	85
43	The interaction of carbon dioxide with Cu(100). Surface Science, 1992, 269-270, 352-359	1.8	74
42	Formate synthesis on Cu(100). <i>Journal of Physics Condensed Matter</i> , 1991 , 3, S59-S63	1.8	5
41	The p4g or pgg reconstruction on Cu(100). Journal of Physics Condensed Matter, 1991, 3, S107-S110	1.8	3
40	Reconstruction of Cu(100) by adsorption of atomic hydrogen. <i>Surface Science</i> , 1991 , 248, 35-44	1.8	82
39	THE Sm/Si(100) interface studied by electron spectroscopy. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1990 , 52, 67-78	1.7	10
38	Xps study of chemisorption of CH4 on Ni(100). Surface Science, 1990 , 227, 291-296	1.8	88
37	Dissociative chemisorption of CH4 on Ni(100) with preadsorbed oxygen. <i>Surface Science</i> , 1990 , 234, 79-	- 86 .8	29
36	Adsorption and dissociation of HCN on the Pt(111) and Pt(112) surfaces. <i>Surface Science</i> , 1988 , 203, 1-7	16 1.8	36
35	Oxidation of HCN on the Pt(111) and Pt(112) surfaces. Surface Science, 1988, 203, 17-32	1.8	19
34	Mixed valence of Sm on metal single-crystal surfaces. <i>Physical Review B</i> , 1988 , 37, 4809-4812	3.3	39
33	Scanning kinetic spectroscopy and temperature-programmed desorption studies of the adsorption and decomposition of hydrogen cyanide on the nickel(111) surface. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 471-476		26
32	Surface reaction pathways of methylamine on the Ni(111) surface. <i>Journal of Chemical Physics</i> , 1987 , 86, 4692-4700	3.9	56

31	Methanol decomposition on Ni(111): Investigation of the C-O bond scission mechanism. <i>Surface Science</i> , 1987 , 183, 316-330	1.8	37
30	Co adsorption site exchange between step and terrace sites on Pt(112). Surface Science, 1987, 191, L8	13 <u>-1</u> . % 18	8 62
29	Hydrogen implantation in Ni(111) ♣ study of H2 desorption dynamics from the bulk. <i>Surface Science</i> , 1987 , 182, 375-389	1.8	36
28	Background subtraction in electron spectroscopy by use of reflection electron energy loss spectra. <i>Applied Surface Science</i> , 1987 , 29, 101-112	6.7	10
27	Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra: Application to background removal in electron spectroscopy. <i>Physical Review B</i> , 1987 , 35, 6570-6577	3.3	269
26	Bremsstrahlung induced Auger electron spectra (BAES) of transition metals. <i>Fresenius Zeitschrift Fil Analytische Chemie</i> , 1987 , 329, 152-157		2
25	Isotopic Effects in the Adsorption and Desorption of Hydrogen by Ni(111). <i>Springer Series in Surface Sciences</i> , 1987 , 71-88	0.4	1
24	Quantitative analysis of reflection electron energy loss spectra of aluminum. <i>Solid State Communications</i> , 1986 , 57, 77-79	1.6	24
23	High-intensity transition in the low-energy part of the electron-energy-loss spectra of Yb and related metals. <i>Physical Review B</i> , 1986 , 33, 3503-3506	3.3	14
22	Angular distributions of H2 thermal desorption: Coverage dependence on Ni(111). <i>Journal of Chemical Physics</i> , 1986 , 85, 6186-6191	3.9	35
21	High- and low-energy Auger-electron transitions in ytterbium and gold: Theory and experiments. <i>Physical Review B</i> , 1986 , 33, 937-942	3.3	2
20	Electronic and Geometrical Structures of Yb-Al (110), Yb-Si (111) and Yb-Ni (110) Interfaces <i>Studies in Surface Science and Catalysis</i> , 1985 , 21-31	1.8	
19	Spectroscopic and structural investigations of the Yb?Al(110), Yb?Ni(110) and Yb?Si(111) interfaces as a function of temperature. <i>Surface Science</i> , 1985 , 152-153, 749-756	1.8	39
18	The Yb?Ni interface studied with photoemission spectroscopy. <i>Surface Science</i> , 1985 , 160, 587-598	1.8	25
17	3p resonance photoionization of the valence band in metallic Ca: Atomic and solid-state many-body effects. <i>Physical Review B</i> , 1984 , 30, 6251-6254	3.3	18
16	Structural investigations of the Yb? Si(111) - 2x1, 5x1 and 3x1 overlayers. <i>Solid State Communications</i> , 1984 , 52, 283-286	1.6	22
15	Surface segregation and mixed valency in dilute Yb-Al interdiffusion compounds. <i>Surface Science</i> , 1984 , 143, 177-187	1.8	28
14	The Yb/Al(110) interface studied by electron spectroscopy. <i>Surface Science</i> , 1984 , 138, 148-158	1.8	17

13	Tables of Auger transition amplitudes. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1983 , 32, 1-57	1.7	5
12	Low Energy Auger Spectrum of Tungsten. <i>Physica Scripta</i> , 1983 , T4, 165-168	2.6	3
11	METAL SURFACES STUDIED BY ELECTRON ENERGY LOSS SPECTROSCOPY. <i>Annals of the New York Academy of Sciences</i> , 1983 , 410, 39-46	6.5	
10	4p and 4d Auger spectra of atomic and solid Yb. <i>Physical Review B</i> , 1983 , 27, 945-954	3.3	29
9	Tm Studied by Electron Energy-Loss Spectroscopy and Auger Electron Spectroscopy. <i>Physica Scripta</i> , 1983 , T4, 169-172	2.6	11
8	A combined X-Ray photoelectron and M?ssbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co\$z.sbnd;Mo catalysts. <i>Journal of Catalysis</i> , 1982 , 77, 397-409	7-3	269
7	Optimized CoNi Nanoparticle Composition for Curie-Temperature-Controlled Induction-Heated Catalysis. <i>ACS Applied Nano Materials</i> ,	5.6	2
6	Increasing Current Density of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes. ACS Energy Letters, 36-41	20.1	10
5	High Purity H2/H2O/Nickel/Stabilized Zirconia Electrodes at 500°C. Ceramic Engineering and Science Proceedings,159-168	0.1	
4	Selenium Thin-Film Solar Cells with Cadmium Sulfide as a Heterojunction Partner. <i>ACS Applied Energy Materials</i> ,	6.1	3
3	Reversible Solid Oxide Cells91-101		1
2	The low overpotential regime of acidic water oxidation part I: the importance of O2 detection. Energy and Environmental Science,	35.4	2
1	Transients in Electrochemical CO Reduction Explained by Mass Transport of Buffers. ACS Catalysis, 5155	- 5 3.61	3