
Kathleen M Mccreary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-Patterned Submicrometer Bi ₂ Se ₃ –WS ₂ Pixels with Tunable Circular Polarization at Room Temperature. ACS Applied Materials & Interfaces, 2022, 14, 9504-9514.	4.0	2
2	Visualizing band structure hybridization and superlattice effects in twisted MoS ₂ /WS ₂ heterobilayers. 2D Materials, 2022, 9, 015032.	2.0	9
3	Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Excitonâ€Enhanced Second Harmonic Generation. Advanced Optical Materials, 2022, 10, .	3.6	9
4	Probing Electronic Structures of Monolayer WSe2 Stacked with hBN Using Correlative Cathodoluminescence and Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2021, 27, 1174-1176.	0.2	1
5	Stacking-dependent optical properties in bilayer WSe ₂ . Nanoscale, 2021, 14, 147-156.	2.8	16
6	Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS Nano, 2020, 14, 708-714.	7.3	41
7	Twist Angle-Dependent Atomic Reconstruction and Moiré Patterns in Transition Metal Dichalcogenide Heterostructures. ACS Nano, 2020, 14, 4550-4558.	7.3	172
8	Direct observation of minibands in a twisted graphene/WS ₂ bilayer. Science Advances, 2020, 6, eaay6104.	4.7	39
9	Synthesis of High-Quality Monolayer MoS ₂ by Direct Liquid Injection. ACS Applied Materials & Interfaces, 2020, 12, 9580-9588.	4.0	9
10	Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition. Applied Physics Letters, 2020, 116, .	1.5	25
11	Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 25578-25585.	4.0	43
12	Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Applied Physics Letters, 2019, 114, 151601.	1.5	14
13	Spatially Selective Enhancement of Photoluminescence in MoS ₂ by Exciton-Mediated Adsorption and Defect Passivation. ACS Applied Materials & Interfaces, 2019, 11, 16147-16155.	4.0	47
14	Ultrafast Carrier Dynamics of Monolayer WS ₂ via Broad-Band Time-Resolved Terahertz Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 30676-30683.	1.5	12
15	Resonant optical Stark effect in monolayer WS2. Nature Communications, 2019, 10, 5539.	5.8	46
16	Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform. ACS Nano, 2019, 13, 904-912.	7.3	80
17	Nano-"Squeegee―for the Creation of Clean 2D Material Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 10379-10387.	4.0	124
18	Spin relaxation and proximity effect in WS2/graphene/fluorographene non-local spin valves. Carbon, 2018, 131, 18-25.	5.4	13

KATHLEEN M MCCREARY

#	Article	IF	CITATIONS
19	Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nature Physics, 2018, 14, 355-359.	6.5	83
20	Electrical Characterization of Discrete Defects and Impact of Defect Density on Photoluminescence in Monolayer WS ₂ . ACS Nano, 2018, 12, 1793-1800.	7.3	106
21	Imaging spin dynamics in monolayer WS ₂ by time-resolved Kerr rotation microscopy. 2D Materials, 2018, 5, 011010.	2.0	47
22	Double Indirect Interlayer Exciton in a MoSe ₂ /WSe ₂ van der Waals Heterostructure. ACS Nano, 2018, 12, 4719-4726.	7.3	160
23	A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. APL Materials, 2018, 6, .	2.2	103
24	Understanding Variations in Circularly Polarized Photoluminescence in Monolayer Transition Metal Dichalcogenides. ACS Nano, 2017, 11, 7988-7994.	7.3	56
25	Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS ₂ . ACS Nano, 2017, 11, 12601-12608.	7.3	112
26	Graphene and monolayer transition-metal dichalcogenides: properties and devices. Journal of Materials Research, 2016, 31, 845-877.	1.2	15
27	Spatial Control of Photoluminescence at Room Temperature by Ferroelectric Domains in Monolayer WS ₂ /PZT Hybrid Structures. ACS Omega, 2016, 1, 1075-1080.	1.6	25
28	Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS ₂ . Journal of Physical Chemistry Letters, 2016, 7, 5242-5246.	2.1	85
29	Magnetoreflection spectroscopy of monolayer transition-metal dichalcogenide semiconductors in pulsed magnetic fields. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 04J102.	0.6	7
30	High room temperature optical polarization due to spin-valley coupling in monolayer WS2. AIP Advances, 2016, 6, .	0.6	21
31	Anomalous temperature-dependent spin-valley polarization in monolayer WS2. Scientific Reports, 2016, 6, 18885.	1.6	57
32	The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer WS2. Scientific Reports, 2016, 6, 35154.	1.6	107
33	Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence. Scientific Reports, 2016, 6, 19159.	1.6	153
34	Spatially Resolved Electronic Properties of Single-Layer WS ₂ on Transition Metal Oxides. ACS Nano, 2016, 10, 10058-10067.	7.3	31
35	Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nature Communications, 2016, 7, 10643.	5.8	253
36	Charge Trapping and Exciton Dynamics in Large-Area CVD Grown MoS ₂ . Journal of Physical Chemistry C, 2016, 120, 5819-5826.	1.5	111

KATHLEEN M MCCREARY

#	Article	IF	CITATIONS
37	Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements. Applied Physics Letters, 2015, 107, 142406.	1.5	5
38	Spin Coherence and Dephasing of Localized Electrons in Monolayer MoS ₂ . Nano Letters, 2015, 15, 8250-8254.	4.5	49
39	Optical detection of spin Hall effect in metals. Applied Physics Letters, 2014, 104, 172402.	1.5	32
40	Largeâ€Area Synthesis of Continuous and Uniform MoS ₂ Monolayer Films on Graphene. Advanced Functional Materials, 2014, 24, 6449-6454.	7.8	149
41	A graphene solution to conductivity mismatch: Spin injection from ferromagnetic metal/graphene tunnel contacts into silicon. Journal of Applied Physics, 2013, 113, .	1.1	10
42	A systematic approach to interpreting Hanle spin precession data in non-local spin valves. , 2013, , .		1
43	Integrating MBE materials with graphene to induce novel spin-based phenomena. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 04D105.	0.6	12
44	Effect of <i>in situ</i> deposition of Mg adatoms on spin relaxation in graphene. Physical Review B, 2013, 87, .	1.1	20
45	Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents. Physical Review Letters, 2012, 109, 186604.	2.9	262
46	Spin Relaxation in Single-Layer Graphene with Tunable Mobility. Nano Letters, 2012, 12, 3443-3447.	4.5	53
47	Spin transport and relaxation in graphene. Journal of Magnetism and Magnetic Materials, 2012, 324, 369-381.	1.0	128
48	Induced smectic phases in phase diagrams of binary nematic liquid crystal mixtures. Journal of Chemical Physics, 2011, 134, 124508.	1.2	11
49	Enhanced spin injection efficiency and extended spin lifetimes in graphene spin valves. Proceedings of SPIE, 2011, , .	0.8	2
50	Metallic and insulating adsorbates on graphene. Applied Physics Letters, 2011, 98, .	1.5	46
51	Tunneling Spin Injection into Single Layer Graphene. Physical Review Letters, 2010, 105, 167202.	2.9	422
52	Manipulation of Spin Transport in Graphene by Surface Chemical Doping. Physical Review Letters, 2010, 104, 187201.	2.9	168
53	Enhanced spin injection into single layer graphene with atomically smooth MgO barrier. , 2010, , .		0
54	Effect of cluster formation on graphene mobility. Physical Review B, 2010, 81, .	1.1	143

#	Article	IF	CITATIONS
55	Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Applied Physics Letters, 2009, 94, .	1.5	141
56	Spin transport in graphite and graphene spin valves. Proceedings of SPIE, 2009, , .	0.8	8
57	Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene. Physical Review Letters, 2009, 102, 137205.	2.9	130
58	Electronic doping and scattering by transition metals on graphene. Physical Review B, 2009, 80, .	1.1	245
59	Bias and gate control of graphene spin valves. , 2009, , .		Ο
60	Growth of atomically smooth MgO films on graphene by molecular beam epitaxy. Applied Physics Letters, 2008, 93, .	1.5	43