Adam Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491432/publications.pdf Version: 2024-02-01

ADAM RVDNE

#	Article	IF	CITATIONS
1	An Alarmin Role for P2Y13 Receptor during Viral-driven Asthma Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 263-265.	5.6	0
2	CYFRA 21-1 Predicts Progression in Idiopathic Pulmonary Fibrosis: A Prospective Longitudinal Analysis of the PROFILE Cohort. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1440-1448.	5.6	14
3	The Respiratory Microbiome in Chronic Hypersensitivity Pneumonitis Is Distinct from That of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 339-347.	5.6	45
4	Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunology, 2021, 14, 282-295.	6.0	53
5	Bridging Knowledge Gaps in Anaphylaxis Management Through a Video-Based Educational Tool. Journal of Allergy and Clinical Immunology, 2021, 147, AB159.	2.9	1
6	DNA Methylome Alterations Are Associated with Airway Macrophage Differentiation and Phenotype during Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 954-966.	5.6	17
7	IRF5 regulates airway macrophage metabolic responses. Clinical and Experimental Immunology, 2021, 204, 134-143.	2.6	9
8	Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. Journal of Experimental Medicine, 2020, 217, .	8.5	113
9	Itaconate controls the severity of pulmonary fibrosis. Science Immunology, 2020, 5, .	11.9	73
10	Lung fibrosis enters the iron age ^{â€} . Journal of Pathology, 2020, 252, 1-3.	4.5	9
11	Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent. European Respiratory Journal, 2020, 55, 1901519.	6.7	42
12	Itaconate drives the resolution of pulmonary fibrosis. , 2020, , .		0
13	Inflammasome activation in airway macrophages and the lung microbiome in IPF. , 2020, , .		1
14	Reply to Puxeddu et al.: CD71â^' Alveolar Macrophages in Idiopathic Pulmonary Fibrosis: A Look beyond the Borders of the Disease. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1446-1447.	5.6	0
15	Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	12.4	189
16	Modelling Forced Vital Capacity in Idiopathic Pulmonary Fibrosis: Optimising Trial Design. Advances in Therapy, 2019, 36, 3059-3070.	2.9	4
17	The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 209-219.	5.6	82
18	Histamine-driven responses are sustained via a bioactive metabolite. Journal of Allergy and Clinical Immunology, 2019, 143, 2287-2290.e1.	2.9	1

Adam Byrne

#	Article	IF	CITATIONS
19	Inception of early-life allergen–induced airway hyperresponsiveness is reliant on IL-13 ⁺ CD4 ⁺ T cells. Science Immunology, 2018, 3, .	11.9	50
20	A critical role for IRF5 in regulating allergic airway inflammation. Mucosal Immunology, 2017, 10, 716-726.	6.0	31
21	Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease?. Trends in Molecular Medicine, 2016, 22, 303-316.	6.7	239
22	IRF5 controls both acute and chronic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11001-11006.	7.1	125
23	Perinatal paracetamol exposure in mice does not affect the development of allergic airways disease in early life. Thorax, 2015, 70, 528-536.	5.6	13
24	IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. Journal of Experimental Medicine, 2015, 212, 845-853.	8.5	194
25	Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015, 70, 1189-1196.	5.6	359
26	Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity, 2015, 43, 945-958.	14.3	137
27	IRF5:RelA Interaction Targets Inflammatory Genes in Macrophages. Cell Reports, 2014, 8, 1308-1317.	6.4	94
28	IRF5 Is a Specific Marker of Inflammatory Macrophages <i>In Vivo</i> . Mediators of Inflammation, 2013, 2013, 1-9.	3.0	103
29	Anaphylactic responses to histamine in mice utilize both histamine receptors 1 and 2. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1338-1340.	5.7	27
30	Lung Macrophages Contribute to House Dust Mite Driven Airway Remodeling via HIF-1α. PLoS ONE, 2013, 8, e69246.	2.5	28
31	Cutting Edge: Histamine Is Required for IL-4–Driven Eosinophilic Allergic Responses. Journal of Immunology, 2012, 188, 536-540.	0.8	11
32	Antigen-Fixed Leukocytes Tolerize Th2 Responses in Mouse Models of Allergy. Journal of Immunology, 2011, 187, 5090-5098.	0.8	71
33	Synthesis and pharmacological evaluation of the individual stereoisomers of 3-[methyl(1,2,3,4-tetrahydro-2-naphthalenyl)amino]-1-indanone, a potent mast cell stabilising agent. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1191-1194.	2.2	9
34	Novel Mast Cell-Stabilising Amine Derivatives of 3,4-Dihydronaphthalen-1(2H)-one and 6,7,8,9-Tetrahydro-5H-benzo[7]annulen-5-one. Medicinal Chemistry, 2011, 7, 213-223.	1.5	19
35	Novel method of measuring the mental workload of anaesthetists during clinical practice. British Journal of Anaesthesia, 2010, 105, 767-771.	3.4	56