Ca Nucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491385/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Influence of a lossy ground on lightning-induced voltages on overhead lines. IEEE Transactions on Electromagnetic Compatibility, 1996, 38, 250-264.	2.2	361
2	Lightning-induced voltages on overhead lines. IEEE Transactions on Electromagnetic Compatibility, 1993, 35, 75-86.	2.2	309
3	Lightning return stroke current models with specified channelâ€base current: A review and comparison. Journal of Geophysical Research, 1990, 95, 20395-20408.	3.3	304
4	Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: Definition of Mother Wavelets Inferred From Fault Originated Transients. IEEE Transactions on Power Systems, 2008, 23, 380-388.	6.5	248
5	Short-Term Scheduling and Control of Active Distribution Systems With High Penetration of Renewable Resources. IEEE Systems Journal, 2010, 4, 313-322.	4.6	209
6	Integrated Use of Time-Frequency Wavelet Decompositions for Fault Location in Distribution Networks: Theory and Experimental Validation. IEEE Transactions on Power Delivery, 2010, 25, 3139-3146.	4.3	187
7	Transient analysis of multiconductor lines above a lossy ground. IEEE Transactions on Power Delivery, 1999, 14, 294-302.	4.3	168
8	An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method. IEEE Transactions on Power Delivery, 2007, 22, 684-692.	4.3	156
9	Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions on Power Systems, 2003, 18, 313-323.	6.5	119
10	Effect of vertically extended strike object on the distribution of current along the lightning channel. Journal of Geophysical Research, 2002, 107, ACL 16-1-ACL 16-6.	3.3	117
11	Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 532-547.	2.2	99
12	Lightning-Induced Overvoltages Transferred Through Distribution Power Transformers. IEEE Transactions on Power Delivery, 2009, 24, 360-372.	4.3	93
13	External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14, 751-761.	2.9	91
14	Evaluation of Lightning Electromagnetic Fields and Their Induced Voltages on Overhead Lines Considering the Frequency Dependence of Soil Electrical Parameters. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 1210-1219.	2.2	86
15	Lightning Induced Disturbances in Buried Cables—Part II: Experiment and Model Validation. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 509-520.	2.2	78
16	Lightning return stroke current radiation in presence of a conducting ground: 2. Validity assessment of simplified approaches. Journal of Geophysical Research, 2008, 113, .	3.3	77
17	Response of multiconductor power lines to nearby lightning return stroke electromagnetic fields. IEEE Transactions on Power Delivery, 1997, 12, 1404-1411.	4.3	69
18	Transmission Planning With Battery-Based Energy Storage Transportation For Power Systems With High Penetration of Renewable Energy. IEEE Transactions on Power Systems, 2021, 36, 4928-4940.	6.5	66

#	Article	IF	CITATIONS
19	An Algorithm for the Exact Evaluation of the Underground Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 401-411.	2.2	57
20	Interaction of electromagnetic fields generated by lightning with overhead electrical networks. , 2014, , 559-609.		47
21	Indirect-Lightning Performance of Overhead Distribution Networks With Complex Topology. IEEE Transactions on Power Delivery, 2009, 24, 2206-2213.	4.3	45
22	Influence of the Return Stroke Current Waveform on the Lightning Performance of Distribution Lines. IEEE Transactions on Power Delivery, 2017, 32, 1800-1808.	4.3	44
23	On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures: 2. Experiment and model validation. Journal of Geophysical Research, 2007, 112, .	3.3	38
24	Models of Wind-Turbine Main-Shaft Bearings for the Development of Specific Lightning Protection Systems. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 99-107.	2.2	38
25	Use of the full-wave Finite Element Method for the numerical electromagnetic analysis of LEMP and its coupling to overhead lines. Electric Power Systems Research, 2013, 94, 24-29.	3.6	36
26	Synchrophasors-Based Distributed Secondary Voltage/VAR Control via Cellular Network. IEEE Transactions on Smart Grid, 2017, 8, 262-274.	9.0	33
27	Lightning Performance Assessment of Power Distribution Lines by Means of Stratified Sampling Monte Carlo Method. IEEE Transactions on Power Delivery, 2018, 33, 2571-2577.	4.3	29
28	Lightning Performance of Overhead Power Distribution Lines in Urban Areas. IEEE Transactions on Power Delivery, 2018, 33, 581-588.	4.3	28
29	Lagrangian relaxation and Tabu Search approaches for the unit commitment problem. , 0, , .		27
30	On the Transmission-Line Approach for the Evaluation of LEMP Coupling to Multiconductor Lines. IEEE Transactions on Power Delivery, 2015, 30, 861-869.	4.3	27
31	Designing Collaborative Energy Communities: A European Overview. Energies, 2021, 14, 8226.	3.1	26
32	Direct Lightning Performance of Distribution Lines With Shield Wire Considering LEMP Effect. IEEE Transactions on Power Delivery, 2022, 37, 76-84.	4.3	24
33	Electromagnetic field radiated by lightning to tall towers: Treatment of the discontinuity at the return stroke wave front. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	23
34	SITL and HLA co-simulation platforms: Tools for analysis of the integrated ICT and electric power system. , 2013, , .		23
35	Response of distribution networks to direct and indirect lightning: Influence of surge arresters location, flashover occurrence and environmental shielding. Electric Power Systems Research, 2017, 153, 73-81.	3.6	23
36	Power distribution practices in USA and Europe: impact on power quality. , 0, , .		22

#	Article	IF	CITATIONS
37	A survey on Cigré and IEEE procedures for the estimation of the lightning performance of overhead transmission and distribution lines. , 2010, , .		21
38	Effects of nearby buildings on lightning induced voltages on overhead power distribution lines. Electric Power Systems Research, 2013, 94, 38-45.	3.6	20
39	An Energy Resource Scheduler Implemented in the Automatic Management System of a Microgrid Test Facility. , 2007, , .		18
40	Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems. , 2007, , .		17
41	ICT-power co-simulation platform for the analysis of communication-based volt/var optimization in distribution feeders. , 2014, , .		16
42	Lightning performances of distribution lines: sensitivity to computational methods and to data. , 0, , .		15
43	On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures: 1. Computational models. Journal of Geophysical Research, 2007, 112, .	3.3	14
44	Protection against lightning overvoltages in resonant grounded power distribution networks. Electric Power Systems Research, 2014, 113, 121-128.	3.6	13
45	Estimation of the influence of direct strokes on the lightning performance of overhead distribution lines. , 2015, , .		13
46	A Statistical Approach for Estimating the Correlation between Lightning and Faults in Power Distribution Systems. , 2006, , .		12
47	On the Relationship Between the Signature of Close Electric Field and the Equivalent Corona Current in Lightning Return Stroke Models. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 921-927.	2.2	12
48	An Improved Approach for the Calculation of the Transient Ground Resistance Matrix of Multiconductor Lines. IEEE Transactions on Power Delivery, 2016, 31, 1142-1149.	4.3	12
49	A Quasi-Monte Carlo Integration Method Applied to the Computation of the Pollaczek Integral. IEEE Transactions on Power Delivery, 2008, 23, 1527-1534.	4.3	11
50	Lightning performance of a real distribution network with focus on transformer protection. Electric Power Systems Research, 2016, 139, 60-67.	3.6	10
51	Influence of the presence of grounded wires on the lightning performance of a medium-voltage line. Electric Power Systems Research, 2021, 196, 107206.	3.6	10
52	Lightning-induced overvoltages transferred from medium-voltage to low-voltage networks. , 2005, , .		9
53	An automatic system to locate phase-to-ground faults in medium voltage cable networks based on the wavelet analysis of high-frequency signals. , 2011, ,		9
54	A New Transient-Based Earth Fault Protection System for Unearthed Meshed Distribution Networks. IEEE Transactions on Power Delivery, 2021, 36, 2585-2594.	4.3	9

#	Article	lF	CITATIONS
55	Using of a cost-based unit commitment algorithm to assist bidding strategy decisions. , 0, , .		8
56	Indirect lightning performance of a real distribution network with focus on transformer protection. , 2014, , .		8
57	Estimation of the expected annual number of flashovers in power distribution lines due to negative and positive lightning. Electric Power Systems Research, 2019, 176, 105956.	3.6	8
58	Lightning protection of a multi-circuit HV-MV overhead line. Electric Power Systems Research, 2020, 180, 106119.	3.6	8
59	Interaction between grounding systems and nearby lightning for the calculation of overvoltages in overhead distribution lines. , 2011, , .		7
60	Advancements in insulation coordination for improving lightning performance of distribution lines. , 2015, , .		7
61	Assessment of the Effects of the Electromagnetic Pulse on the Response of Overhead Distribution Lines to Direct Lightning Strikes. IEEE Open Access Journal of Power and Energy, 2021, 8, 522-531.	3.4	7
62	On the enhancement of radiated electric and magnetic fields associated with lightning return strokes to tall structures. , 0, , .		6
63	Use of lightning location systems data in integrated systems for power quality monitoring. , 0, , .		6
64	Measurement of lightning-induced currents in an experimental coaxial buried cable. , 0, , .		5
65	Lightning-Correlated Faults in Power Distribution Networks. , 2007, , .		5
66	A DC-Link Voltage Control Strategy for Fast Frequency Response Support. , 2020, , .		5
67	Response of multiconductor power lines to nearby lightning return stroke electromagnetic fields. , 0, , .		4
68	Calculation of lightning-induced voltages on an overhead line taking into account the presence of nearby buildings. , 2011, , .		4
69	Lightning induced overvoltages on overhead lines shielded by nearby buildings. , 2016, , .		4
70	Lightning Protection of a Compact MV Power Line Sharing the same Poles of a HV Line. , 2018, , .		4
71	Influence of the Radial Electric Field Appraisal on Lightning-Induced Overvoltages Statistical Assessment. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 637-643.	2.2	4
72	Mixed integer programming model for the operation of an experimental low-voltage network. , 2017, , .		3

#	Article	IF	CITATIONS
73	A New Calculation Method of the Lightning Electromagnetic Field Considering Variable Return Stroke Velocity. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 152-159.	2.2	3
74	Performance analysis of a transient-based earth fault protection system for unearthed and compensated radial distribution networks. Electric Power Systems Research, 2021, 197, 107306.	3.6	3
75	Voltage transient measurements in a distribution network and sequence of relay events associated to lightning strokes detected by LLS. , 2010, , .		2
76	Calculation of lightning-induced overvoltages on urban overhead lines above a lossy ground plane — appraisal of the shielding effect of nearby buildings. , 2017, , .		2
77	Expansion Planning Model Coordinated with both Stationary and Transportable Storage Systems for Transmission Networks with High RES Penetration. , 2020, , .		2
78	On the amplitude enhancement of voltages induced by external EM fields on transmission lines due to ground losses and corona phenomenon. , 0, , .		1
79	Correction to "Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment". IEEE Transactions on Power Systems, 2003, 18, 974-974.	6.5	1
80	A research on plants for in-situ vitrification of contaminated soils. , 0, , .		1
81	Bidding strategy selection in a day-ahead electricity auction system. , 2005, , .		1
82	Performance Analysis of a Communication-Supported Earth Fault Protection System of Medium Voltage Loop and Meshed Networks. , 2018, , .		1
83	Statistical Characterization of Lightning Induced Overvoltage Waveforms in Overhead Lines. , 2019, , .		1
84	Influence of the Electromagnetic Pulse on the Overvoltages Due to Direct Lightning to Lines over Soils with Different Ground Conductivity. , 2021, , .		1
85	Statistical Assessment of Lightning-Induced Overvoltages in Low Voltage Lines. , 2018, , .		0
86	Using Electromagnetic Time Reversal Similarity Metric to Locate Lightning-Originated Flashovers on Overhead Transmission Lines. , 2019, , .		0
87	Basics of Power Systems Analysis. Springer Handbooks, 2021, , 273-366.	0.6	0