## Jakub Kupecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491172/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40, 12009-12022.                                                                                      | 3.8 | 59        |
| 2  | Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Applied Energy, 2018, 230, 1573-1584.                                             | 5.1 | 58        |
| 3  | Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. International Journal of Hydrogen Energy, 2017, 42, 3487-3497.                                                     | 3.8 | 57        |
| 4  | Energy analysis of a 10†kW-class power-to-gas system based on a solid oxide electrolyzer (SOE). Energy<br>Conversion and Management, 2019, 199, 111934.                                                                               | 4.4 | 50        |
| 5  | Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model. Applied Energy, 2018, 227, 198-205.                                                                            | 5.1 | 44        |
| 6  | Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International<br>Journal of Hydrogen Energy, 2021, 46, 35765-35776.                                                                                   | 3.8 | 39        |
| 7  | Dynamic modelling of reversible solid oxide cells for grid stabilization applications. Energy Conversion and Management, 2021, 228, 113674.                                                                                           | 4.4 | 34        |
| 8  | Dynamic numerical analysis of cross-, co-, and counter-current flow configuration of a 1ÂkW-class<br>solid oxide fuel cell stack. International Journal of Hydrogen Energy, 2015, 40, 15834-15844.                                    | 3.8 | 32        |
| 9  | SOFC-based micro-CHP system as an example of efficient power generation unit. Archives of Thermodynamics, 2011, 32, 33-43.                                                                                                            | 1.0 | 26        |
| 10 | Numerical analysis of an SOFC stack under loss of oxidant related fault conditions using a dynamic non-adiabatic model. International Journal of Hydrogen Energy, 2019, 44, 21148-21161.                                              | 3.8 | 26        |
| 11 | Characterization of a circular 80Âmm anode supported solid oxide fuel cell (AS-SOFC) with anode<br>support produced using high-pressure injection molding (HPIM). International Journal of Hydrogen<br>Energy, 2019, 44, 19405-19411. | 3.8 | 25        |
| 12 | ANN–supported control strategy for a solid oxide fuel cell working on demand for a public utility<br>building. International Journal of Hydrogen Energy, 2018, 43, 3555-3565.                                                         | 3.8 | 22        |
| 13 | Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes. International Journal of Hydrogen Energy, 2015, 40, 11633-11640.                                                    | 3.8 | 19        |
| 14 | Investigation of off-design characteristics of solid oxide electrolyser (SOE) operating in endothermic conditions. Renewable Energy, 2021, 170, 277-285.                                                                              | 4.3 | 19        |
| 15 | Modeling and analysis of cross-flow solid oxide electrolysis cell with oxygen electrode/electrolyte<br>interface oxygen pressure characteristics for hydrogen production. Journal of Power Sources, 2022,<br>529, 231248.             | 4.0 | 17        |
| 16 | Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas. Energy, 2021, 218, 119556.                                 | 4.5 | 16        |
| 17 | Modeling and control-oriented thermal safety analysis for mode switching process of reversible solid oxide cell system. Energy Conversion and Management, 2022, 255, 115318.                                                          | 4.4 | 16        |
| 18 | Variant analysis of the efficiency of industrial scale power station based on DC-SOFCs and DC-MCFCs.<br>Energy, 2018, 156, 292-298.                                                                                                   | 4.5 | 14        |

Јакив Кирескі

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions. Archives of Thermodynamics, 2013, 34, 3-21.                                                                            | 1.0 | 13        |
| 20 | Analysis of a Micro-CHP Unit with in-series SOFC Stacks Fed by Biogas. Energy Procedia, 2015, 75, 2021-2026.                                                                                                                      | 1.8 | 13        |
| 21 | Comparative Study of Biogas and DME Fed Micro-CHP System with Solid Oxide Fuel Cell. Applied<br>Mechanics and Materials, 0, 267, 53-56.                                                                                           | 0.2 | 11        |
| 22 | Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack<br>Environment. Processes, 2020, 8, 1370.                                                                                         | 1.3 | 11        |
| 23 | Boosting solid oxide electrolyzer performance by fine tuning the microstructure of electrodes –<br>Preliminary study. International Journal of Hydrogen Energy, 2023, 48, 26436-26445.                                            | 3.8 | 11        |
| 24 | Real coupling of solid oxide fuel cells with a biomass steam gasifier: Operating boundaries considering performance, tar and carbon deposition analyses. Fuel, 2022, 316, 123310.                                                 | 3.4 | 10        |
| 25 | Investigation of SOFC material properties for plant-level modeling. Open Chemistry, 2013, 11, 664-671.                                                                                                                            | 1.0 | 9         |
| 26 | Dynamic Modelling of the Direct Internal Reforming (DIR) of Methane in 60-cell Stack with Electrolyte<br>Supported Cells. Energy Procedia, 2017, 105, 1700-1705.                                                                  | 1.8 | 9         |
| 27 | Multi-Level Mathematical Modeling of Solid Oxide Fuel Cells. , 2012, , .                                                                                                                                                          |     | 7         |
| 28 | Modeling Platform for a Micro-CHP System with SOFC Operating under Load Changes. Applied Mechanics and Materials, 0, 607, 205-208.                                                                                                | 0.2 | 7         |
| 29 | Analysis of nodalization effects on the prediction error of generalized finite element method used for dynamic modeling of hot water storage tank. Archives of Thermodynamics, 2015, 36, 123-138.                                 | 1.0 | 6         |
| 30 | Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model. Polish Journal of Chemical Technology, 2017, 19, 67-73.                                             | 0.3 | 6         |
| 31 | Kinetic model of a plate fin heat exchanger with catalytic coating as a steam reformer of methane,<br>biogas, and dimethyl ether. International Journal of Energy Research, 2019, 43, 2930-2939.                                  | 2.2 | 6         |
| 32 | Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance. Energy, 2018, 152, 888-895.                                                                            | 4.5 | 5         |
| 33 | Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC)<br>Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC). Archives of<br>Thermodynamics, 2017, 38, 53-63. | 1.0 | 4         |
| 34 | Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis. Archives of<br>Thermodynamics, 2015, 36, 85-103.                                                                                        | 1.0 | 3         |
| 35 | Model-Based Approach for Analysis of the Sensitivity of Planar SOEC to Selected Parameters. ECS<br>Transactions, 2018, 83, 171-178.                                                                                               | 0.3 | 3         |
| 36 | Modelling of Physical, Chemical, and Material Properties of Solid Oxide Fuel Cells. Journal of Chemistry, 2015, 2015, 1-7.                                                                                                        | 0.9 | 2         |

Јакив Кирескі

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preliminary Long-Term Experimental Characterization of a Solid Oxide Fuel Cell Operated in DIR-SOFC Mode. ECS Transactions, 2019, 91, 471-477.                                                      | 0.3 | 2         |
| 38 | Investigation of off-design characteristics of solid oxide electrolyser (SOE) operated in endothermic conditions. E3S Web of Conferences, 2019, 137, 01029.                                         | 0.2 | 2         |
| 39 | Multilevel modeling of solid oxide electrolysis. , 2020, , 123-166.                                                                                                                                 |     | 2         |
| 40 | Quantification of the Improvement of Performance of Solid Oxide Fuel Cell Using Chiller-Based Fuel<br>Recirculation. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, . | 1.4 | 2         |
| 41 | Selected Aspects of Design, Construction, and Operation of SOFC-Based Micro-Combined Heat and Power Systems. Green Energy and Technology, 2018, , 205-231.                                          | 0.4 | 1         |
| 42 | Effects of the Gas Velocity on Formation of the Carbon Deposits on Fuel Electrode of AS-SOFC. ECS Meeting Abstracts, 2017, , .                                                                      | 0.0 | 1         |
| 43 | Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC. Energies, 2022, 15, 1469.                                 | 1.6 | 1         |
| 44 | Efficient and Economically Favorable Co-Free Air Electrodes for Solid Oxide Cells. ECS Transactions, 2021, 103, 1497-1504.                                                                          | 0.3 | 0         |
| 45 | Modeling of SOFC-Based Power Systems. Green Energy and Technology, 2018, , 143-162.                                                                                                                 | 0.4 | 0         |
| 46 | Profiled Anode Supported Solid Oxide Fuel Cells for Low Cost Stacks for Stationary Applications. ECS<br>Meeting Abstracts, 2018, , .                                                                | 0.0 | 0         |