Alberto Giacomello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs. Nanoscale, 2022, 14, 939-952.	2.8	14
2	Molecular dynamics simulations suggest possible activation and deactivation pathways in the hERG channel. Communications Biology, 2022, 5, 165.	2.0	6
3	Intrinsic and apparent slip at gas-enriched liquid–liquid interfaces: a molecular dynamics study. Journal of Fluid Mechanics, 2022, 938, .	1.4	1
4	Computational methods and theory for ion channel research. Advances in Physics: X, 2022, 7, .	1.5	8
5	Giant Negative Compressibility by Liquid Intrusion into Superhydrophobic Flexible Nanoporous Frameworks. Nano Letters, 2021, 21, 2848-2853.	4.5	24
6	Structure and dynamics of water confined in cylindrical nanopores with varying hydrophobicity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200403.	1.6	7
7	Liquid intrusion in and extrusion from non-wettable nanopores for technological applications. European Physical Journal B, 2021, 94, 1.	0.6	18
8	Can One Predict a Drop Contact Angle?. Advanced Materials Interfaces, 2021, 8, 2101005.	1.9	3
9	Exploring Kv1.2 Channel Inactivation Through MD Simulations and Network Analysis. Frontiers in Molecular Biosciences, 2021, 8, 784276.	1.6	5
10	Unveiling the Gating Mechanism of CRAC Channel: A Computational Study. Frontiers in Molecular Biosciences, 2021, 8, 773388.	1.6	5
11	Bubble formation in nanopores: a matter of hydrophobicity, geometry, and size. Advances in Physics: X, 2020, 5, 1817780.	1.5	15
12	Gas-Induced Drying of Nanopores. Journal of Physical Chemistry Letters, 2020, 11, 9171-9177.	2.1	18
13	The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. Nanoscale, 2020, 12, 22698-22709.	2.8	27
14	Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials. Applied Energy, 2020, 269, 115088.	5.1	52
15	Recovering superhydrophobicity in nanoscale and macroscale surface textures. Soft Matter, 2019, 15, 7462-7471.	1.2	20
16	Wetting and recovery of nano-patterned surfaces beyond the classical picture. Nanoscale, 2019, 11, 21458-21470.	2.8	14
17	Pore Morphology Determines Spontaneous Liquid Extrusion from Nanopores. ACS Nano, 2019, 13, 1728-1738.	7.3	25
18	Pressure control in interfacial systems: Atomistic simulations of vapor nucleation. Journal of Chemical Physics, 2018, 148, 064706.	1.2	19

Alberto Giacomello

#	Article	IF	CITATIONS
19	Self-Recovery Superhydrophobic Surfaces: Modular Design. ACS Nano, 2018, 12, 359-367.	7.3	29
20	Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls. Journal of Physical Chemistry B, 2018, 122, 200-212.	1.2	11
21	Vapor nucleation paths in lyophobic nanopores. European Physical Journal E, 2018, 41, 52.	0.7	14
22	Viscosity at the Nanoscale: Confined Liquid Dynamics and Thermal Effects in Self-Recovering Nanobumpers. Journal of Physical Chemistry C, 2018, 122, 14248-14256.	1.5	15
23	Intrusion and extrusion of a liquid on nanostructured surfaces. Journal of Physics Condensed Matter, 2017, 29, 014003.	0.7	18
24	Intrusion and extrusion of water in hydrophobic nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10266-E10273.	3.3	66
25	Collapse of superhydrophobicity on nanopillared surfaces. Physical Review Fluids, 2017, 2, .	1.0	19
26	Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces. Journal of Chemical Physics, 2016, 145, 211802.	1.2	37
27	Perpetual superhydrophobicity. Soft Matter, 2016, 12, 8927-8934.	1.2	26
28	Wetting and cavitation pathways on nanodecorated surfaces. Soft Matter, 2016, 12, 3046-3055.	1.2	29
29	Wetting hysteresis induced by nanodefects. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E262-71.	3.3	63
30	Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods. Journal of Chemical Physics, 2015, 142, 104701.	1.2	35
31	How to control bubble nucleation from superhydrophobic surfaces. Journal of Physics: Conference Series, 2015, 656, 012124.	0.3	2
32	Unraveling the Salvinia Paradox: Design Principles for Submerged Superhydrophobicity. Advanced Materials Interfaces, 2015, 2, 1500248.	1.9	39
33	Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces. Physical Review Letters, 2014, 112, .	2.9	114
34	Pressure effects on water slippage over silane-coated rough surfaces: pillars and holes. Microfluidics and Nanofluidics, 2014, 16, 1009-1018.	1.0	20
35	Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels. Meccanica, 2013, 48, 1853-1861.	1.2	9
36	Geometry as a Catalyst: How Vapor Cavities Nucleate from Defects. Langmuir, 2013, 29, 14873-14884.	1.6	49

#	ARTICLE	IF	CITATIONS
37	Metastable Wetting on Superhydrophobic Surfaces: Continuum and Atomistic Views of the Cassie-Baxter–Wenzel Transition. Physical Review Letters, 2012, 109, 226102.	2.9	131
38	Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir, 2012, 28, 10764-10772.	1.6	179
39	Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. Journal of Applied Physics, 2011, 109, 084903.	1.1	126
40	Energy harvesting from flutter instabilities of heavy flags in water through ionic polymer metal composites. Proceedings of SPIE, 2011, , .	0.8	4