
Pilar Teixeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490857/publications.pdf Version: 2024-02-01

DILAD TEIVEIDA

#	Article	IF	CITATIONS
1	Chitosan Nano/Microformulations for Antimicrobial Protection of Leather with a Potential Impact in Tanning Industry. Materials, 2022, 15, 1750.	1.3	5
2	Antibacterial and Biodegradable Electrospun Filtering Membranes for Facemasks: An Attempt to Reduce Disposable Masks Use. Applied Sciences (Switzerland), 2022, 12, 67.	1.3	12
3	Multifunctional natural fibers: the potential of core shell MgO–SiO2 nanoparticles. Cellulose, 2022, 29, 5659-5676.	2.4	2
4	In-situ synthesis of CaO and SiO2 nanoparticles onto jute fabrics: exploring the multifunctionality. Cellulose, 2021, 28, 1123-1138.	2.4	13
5	Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. International Journal of Biological Macromolecules, 2021, 177, 241-251.	3.6	88
6	Deep impact of the inactivation of the SecA2-only protein export pathway on the proteosurfaceome of Listeria monocytogenes. Journal of Proteomics, 2021, 250, 104388.	1.2	3
7	Evaluation by Flow Cytometry of Escherichia coli Viability in Lettuce after Disinfection. Antibiotics, 2020, 9, 14.	1.5	13
8	Comfort and Infection Control of Chitosan-impregnated Cotton Gauze as Wound Dressing. Fibers and Polymers, 2019, 20, 922-932.	1.1	21
9	Electrospinning polypropylene with an amino acid as a strategy to bind the antimicrobial peptide Cys-LC-LL-37. Journal of Materials Science, 2018, 53, 4655-4664.	1.7	7
10	Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2475-2484.	1.7	54
11	Antibiofilm Strategies in the Food Industry. Springer Series on Biofilms, 2014, , 359-381.	0.0	3
12	Mini-review: <i>Staphylococcus epidermidis</i> as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling, 2014, 30, 131-141.	0.8	68
13	Surface adhesins and exopolymers of selected foodborne pathogens. Microbiology (United Kingdom), 2014, 160, 2561-2582.	0.7	23
14	New strategies for surface modification of cotton and silk textiles with antimicrobial properties. Journal of Biotechnology, 2014, 185, S20.	1.9	1
15	Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources. Applied Surface Science, 2013, 270, 1-5.	3.1	7
16	Combined effect of linezolid and N-acetylcysteine against Staphylococcus epidermidis biofilms. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2013, 31, 655-659.	0.3	26
17	Farnesol induces cell detachment from established S. epidermidis biofilms. Journal of Antibiotics, 2013, 66, 255-258.	1.0	16
18	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	4.1	118

PILAR TEIXEIRA

#	Article	IF	CITATIONS
19	Staphylococcus epidermidis Biofilms Control by N-Acetylcysteine and Rifampicin. American Journal of Therapeutics, 2013, 20, 322-328.	0.5	10
20	N-acetylcysteine and vancomycin alone and in combination against staphylococci biofilm. Revista Brasileira De Engenharia Biomedica, 2013, 29, 184-192.	0.3	4
21	Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Research Notes, 2012, 5, 244.	0.6	46
22	Farnesol in combination with N-acetylcysteine against Staphylococcus epidermidis planktonic and biofilm cells. Brazilian Journal of Microbiology, 2012, 43, 235-242.	0.8	13
23	Farnesol in combination with N-acetylcysteine against Staphylococcus epidermidis planktonic and biofilm cells. Brazilian Journal of Microbiology, 2012, 43, 235-42.	0.8	4
24	Virulence Gene Expression byStaphylococcus epidermidisBiofilm Cells Exposed to Antibiotics. Microbial Drug Resistance, 2011, 17, 191-196.	0.9	18
25	<i>Listeria monocytogenes</i> and <i>Salmonella enterica</i> Enteritidis Biofilms Susceptibility to Different Disinfectants and Stress-Response and Virulence Gene Expression of Surviving Cells. Microbial Drug Resistance, 2011, 17, 181-189.	0.9	37
26	Farnesol as Antibiotics Adjuvant in Staphylococcus epidermidis Control In Vitro. American Journal of the Medical Sciences, 2011, 341, 191-195.	0.4	22
27	Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor. Biodegradation, 2011, 22, 661-671.	1.5	24
28	In vitro Activity of Daptomycin, Linezolid and Rifampicin on Staphylococcus epidermidis Biofilms. Current Microbiology, 2011, 63, 313-317.	1.0	33
29	Effect of Farnesol on Structure and Composition of Staphylococcus epidermidis Biofilm Matrix. Current Microbiology, 2011, 63, 354-359.	1.0	38
30	Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. Journal of Environmental Management, 2011, 92, 749-755.	3.8	185
31	Mature landfill leachate treatment by denitrification and ozonation. Process Biochemistry, 2011, 46, 148-153.	1.8	34
32	Salmonella enterica Enteritidis Biofilm Formation and Viability on Regular and Triclosan-Impregnated Bench Cover Materials. Journal of Food Protection, 2011, 74, 32-37.	0.8	30
33	Ozonation as polishing treatment of mature landfill leachate. Journal of Hazardous Materials, 2010, 182, 730-734.	6.5	120
34	DENITRIFYING POTENTIAL OF AN ACTIVATED SLUDGE DERIVED CONSORTIUM. Environmental Engineering and Management Journal, 2010, 9, 299-303.	0.2	2
35	DENITRIFYING ACTIVITY OF ACTIVATED SLUDGE IN SUSPENSION AND IN BIOFILM. Environmental Engineering and Management Journal, 2010, 9, 295-298.	0.2	0
36	Effect of operating parameters on denitrification in an anoxic rotating biological contactor. Environmental Technology (United Kingdom), 2009, 30, 1381-1389.	1.2	10

PILAR TEIXEIRA

#	Article	IF	CITATIONS
37	Influence of Surface Properties on the Adhesion of <i>Staphylococcus epidermidis</i> to Acrylic and Silicone. International Journal of Biomaterials, 2009, 2009, 1-9.	1.1	76
38	The role of extracellular polymers on <i>Staphylococcus epidermidis</i> biofilm biomass and metabolic activity. Journal of Basic Microbiology, 2009, 49, 363-370.	1.8	32
39	Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis. Current Microbiology, 2009, 59, 118-122.	1.0	67
40	Effect of Batch and Fed-Batch Growth Modes on Biofilm Formation by Listeria monocytogenes at Different Temperatures. Current Microbiology, 2009, 59, 457-462.	1.0	13
41	Relevance of Cell Wall and Extracellular Matrix Proteins to Staphylococcus Epidermidis Adhesion and Biofilm Formation. Journal of Adhesion Science and Technology, 2009, 23, 1657-1671.	1.4	2
42	Rotating biological contactors: a review on main factors affecting performance. Reviews in Environmental Science and Biotechnology, 2008, 7, 155-172.	3.9	103
43	Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World Journal of Microbiology and Biotechnology, 2008, 24, 423-426.	1.7	12
44	Adhesion of <i>Listeria monocytogenes</i> to materials commonly found in domestic kitchens. International Journal of Food Science and Technology, 2008, 43, 1239-1244.	1.3	21
45	Reduction of <i>Staphylococcus epidermidis</i> adhesion to indwelling medical devices: a simple procedure. British Journal of Biomedical Science, 2008, 65, 184-190.	1.2	4
46	Adhesion to and Viability of Listeria monocytogenes on Food Contact Surfaces. Journal of Food Protection, 2008, 71, 1379-1385.	0.8	126
47	Adhesion of Salmonella Enteritidis to stainless steel surfaces. Brazilian Journal of Microbiology, 2007, 38, 318-323.	0.8	35
48	Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 239-246.	1.9	16
49	Comparison of the Adhesion Ability of Different Salmonella Enteritidis Serotypes to Materials Used in Kitchens. Journal of Food Protection, 2006, 69, 2352-2356.	0.8	57
50	Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiology, 2005, 22, 247-251.	2.1	58
51	Metabolism of Alcaligenes denitrificans in biofilm vs planktonic cells. Journal of Applied Microbiology, 2002, 92, 256-260.	1.4	4
52	Hydraulic Characteristics of an Anoxic Rotating Biological Contactor: Influence of Biofilm. Environmental Technology (United Kingdom), 2001, 22, 1169-1175.	1.2	3
53	Denitrification in a closed rotating biological contactor: effect of disk submergence. Process Biochemistry, 2001, 37, 345-349.	1.8	26
54	Denitrification by Alcaligenes denitrificans in a closed rotating biological contactor. , 2000, 22, 1789-1792.		12

PILAR TEIXEIRA

#	Article	IF	CITATIONS
55	Adhesion ofAlcaligenes denitrificansto Polymeric Materials: The Effect of Divalent Cations. Journal of Adhesion, 2000, 73, 87-97.	1.8	0
56	Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. Journal of Adhesion Science and Technology, 1999, 13, 1287-1294.	1.4	57
57	The importance of surface properties in the selection of supports for nitrification in airlift bioreactors. Bioprocess and Biosystems Engineering, 1998, 19, 143.	0.5	8
58	Interfacial interactions between nitrifying bacteria and mineral carriers in aqueous media determined by contact angle measurements and thin layer wicking. Colloids and Surfaces B: Biointerfaces, 1998, 12, 69-75.	2.5	21