Christopher W Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849082/publications.pdf

Version: 2024-02-01

53 papers 2,934 citations

218677 26 h-index 197818 49 g-index

56 all docs

56
docs citations

56 times ranked 3855 citing authors

#	Article	IF	CITATIONS
1	X-ROS Signaling: Rapid Mechano-Chemo Transduction in Heart. Science, 2011, 333, 1440-1445.	12.6	485
2	Microtubules Underlie Dysfunction in Duchenne Muscular Dystrophy. Science Signaling, 2012, 5, ra56.	3.6	222
3	E-C coupling failure in mouse EDL muscle after in vivo eccentric contractions. Journal of Applied Physiology, 1998, 85, 58-67.	2.5	214
4	Axial Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient Increase in Ca ²⁺ Spark Rate. Circulation Research, 2009, 104, 787-795.	4.5	199
5	Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nature Communications, 2015, 6, 8526.	12.8	182
6	Axial tubule junctions control rapid calcium signaling in atria. Journal of Clinical Investigation, 2016, 126, 3999-4015.	8.2	118
7	X-ROS signaling in the heart and skeletal muscle: Stretch-dependent local ROS regulates [Ca2+]i. Journal of Molecular and Cellular Cardiology, 2013, 58, 172-181.	1.9	107
8	Dysferlin stabilizes stress-induced Ca ²⁺ signaling in the transverse tubule membrane. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20831-20836.	7.1	104
9	Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Science Signaling, 2017, 10, .	3.6	80
10	Contractile Function During Angiotensin-IlÂActivation. Journal of the American College of Cardiology, 2015, 66, 261-272.	2.8	76
11	Mechanical Stretch-Induced Activation of ROS/RNS Signaling in Striated Muscle. Antioxidants and Redox Signaling, 2014, 20, 929-936.	5.4	75
12	A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial–mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. International Journal of COPD, 2014, 9, 533.	2.3	70
13	Calcium Movement in Cardiac Mitochondria. Biophysical Journal, 2014, 107, 1289-1301.	0.5	64
14	Time Course of Individual Ca2+ Sparks in Frog Skeletal Muscle Recorded at High Time Resolution. Journal of General Physiology, 1999, 113, 187-198.	1.9	59
15	X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 2013, 98, 307-314.	3.8	56
16	Dysferlin at transverse tubules regulates Ca2+ homeostasis in skeletal muscle. Frontiers in Physiology, 2014, 5, 89.	2.8	54
17	Expression of ryanodine receptor RyR3 produces Ca 2+ sparks in dyspedic myotubes. Journal of Physiology, 2000, 525, 91-103.	2.9	48
18	Human skeletal muscle xenograft as a new preclinical model for muscle disorders. Human Molecular Genetics, 2014, 23, 3180-3188.	2.9	48

#	Article	IF	CITATIONS
19	Dynamics of the mitochondrial permeability transition pore: Transient and permanent opening events. Archives of Biochemistry and Biophysics, 2019, 666, 31-39.	3.0	46
20	Quantitative Measurement of Ca2+ in the Sarcoplasmic Reticulum Lumen of Mammalian Skeletal Muscle. Biophysical Journal, 2010, 99, 2705-2714.	0.5	44
21	Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight, 2020, 5, .	5.0	40
22	Homer Protein Increases Activation of Ca2+ Sparks in Permeabilized Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 5781-5787.	3.4	39
23	Effects of varied fatigue protocols on sarcoplasmic reticulum calcium uptake and release rates. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R99-R104.	1.8	36
24	Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue. Journal of Applied Physiology, 1998, 85, 619-626.	2.5	34
25	Genetic deletion of trkB.T1 increases neuromuscular function. American Journal of Physiology - Cell Physiology, 2012, 302, C141-C153.	4.6	32
26	Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. Journal of Physiology, 2015, 593, 2479-2497.	2.9	32
27	Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle. Journal of General Physiology, 2021, 153, .	1.9	30
28	Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Frontiers in Physiology, 2014, 5, 57.	2.8	25
29	Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocrine Reviews, 2022, 43, 329-365.	20.1	24
30	TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations. Bone, 2020, 136, 115356.	2.9	23
31	Differential YAP nuclear signaling in healthy and dystrophic skeletal muscle. American Journal of Physiology - Cell Physiology, 2019, 317, C48-C57.	4.6	22
32	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	12.8	22
33	Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. Scientific Reports, 2015, 5, 13235.	3.3	21
34	Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein. ELife, 2021, 10, .	6.0	21
35	Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca ²⁺ signals that are inhibited by oncogenic KRas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26008-26019.	7.1	19
36	Novel multi-functional fluid flow device for studying cellular mechanotransduction. Journal of Biomechanics, 2016, 49, 4173-4179.	2.1	18

3

#	Article	IF	CITATIONS
37	Deletion of obscurin immunoglobulin domains Ig58/59 leads to age-dependent cardiac remodeling and arrhythmia. Basic Research in Cardiology, 2020, 115, 60.	5.9	17
38	Attenuating persistent sodium current $\hat{a} \in ``induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCl Insight, 2021, 6, .$	5.0	17
39	GsMTx4-D provides protection to the D2.mdx mouse. Neuromuscular Disorders, 2018, 28, 868-877.	0.6	16
40	The Phosphorylation Profile of Myosin Binding Protein-C Slow is Dynamically Regulated in Slow-Twitch Muscles in Health and Disease. Scientific Reports, 2015, 5, 12637.	3.3	15
41	Structure before function: myosin binding proteinâ€C slow is a structural protein with regulatory properties. FASEB Journal, 2018, 32, 6385-6394.	0.5	15
42	Surgical Management of Caseous Calcification of the Mitral Annulus. Annals of Thoracic Surgery, 2015, 99, 2231-2233.	1.3	12
43	Desmin interacts with STIM1 and coordinates Ca2+ signaling in skeletal muscle. JCI Insight, 2021, 6, .	5.0	12
44	Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding. Oncotarget, 2018, 9, 25008-25024.	1.8	11
45	Optogenetic activation of muscle contraction <i>in vivo</i> . Connective Tissue Research, 2021, 62, 15-23.	2.3	9
46	Quantitative tests reveal that microtubules tune the healthy heart but underlie arrhythmias in pathology. Journal of Physiology, 2020, 598, 1327-1338.	2.9	8
47	X-ROS Signaling Depends on Length-Dependent Calcium Buffering by Troponin. Cells, 2021, 10, 1189.	4.1	5
48	Does a lack of RyR3 make mammalian skeletal muscle EC coupling a â€~sparkâ€less' affair?. Journal of Physiology, 2008, 586, 313-314.	2.9	3
49	In vitro Fluid Shear Stress Induced Sclerostin Degradation and CaMKII Activation in Osteocytes. Bio-protocol, 2021, 11, e4251.	0.4	2
50	Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	2
51	ALTERED TRYPTOPHAN DEGRADATION LINKS CHRONIC INFLAMMATION TO FUNCTIONAL DECLINE & amp; FRAILTY IN MICE AND HUMANS. Innovation in Aging, 2019, 3, S957-S958.	0.1	0
52	Transverse Tubule Morphology and Local Calcium Signaling in Skeletal Muscle Health and Disease. FASEB Journal, 2007, 21, A1357.	0.5	0
53	Inhibition of YAP signaling improves recovery in injured skeletal muscle. FASEB Journal, 2022, 36, .	0.5	0