
Chiara Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-destructive Monitoring of Dye Depth Profile in Mesoporous TiO ₂ Electrodes of Solar Cells with Micro-SORS. Analytical Chemistry, 2022, 94, 2966-2972.	3.2	2
2	The "Historical Materials BAG†A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules, 2022, 27, 1997.	1.7	17
3	Insight into the effects of moisture and layer build-up on the formation of lead soaps using micro-ATR-FTIR spectroscopic imaging of complex painted stratigraphies. Analytical and Bioanalytical Chemistry, 2021, 413, 455-467.	1.9	17
4	Time-Resolved ATR–FTIR Spectroscopy and Macro ATR–FTIR Spectroscopic Imaging of Inorganic Treatments for Stone Conservation. Analytical Chemistry, 2021, 93, 14635-14642.	3.2	15
5	Synchrotron radiation μ X-ray diffraction in transmission geometry for investigating the penetration depth of conservation treatments on cultural heritage stone materials. Analytical Methods, 2020, 12, 1587-1594.	1.3	12
6	Nonâ€invasive and <i>in situ</i> investigation of layers sequence in panel paintings by portable microâ€spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2016-2021.	1.2	10
7	Consolidation of building materials with a phosphate-based treatment: Effects on the microstructure and on the 3D pore network. Materials Characterization, 2019, 154, 315-324.	1.9	11
8	Diammonium Hydrogenphosphate Treatment on Dolostone: the Role of Mg in the Crystallization Process. Coatings, 2019, 9, 169.	1.2	14
9	Diammonium hydrogenphosphate for the consolidation of building materials. Investigation of newly-formed calcium phosphates. Construction and Building Materials, 2019, 195, 557-563.	3.2	34
10	Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	9
11	High Resolution ATR μ-FTIR to map the diffusion of conservation treatments applied to painted plasters. Vibrational Spectroscopy, 2018, 98, 105-110.	1.2	10
12	Exploring street art paintings by microspatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 1652-1659.	1.2	15
13	1H NMR depth profiles combined with portable and micro-analytical techniques for evaluating cleaning methods and identifying original, non-original, and degraded materials of a 16th century Italian wall painting. Microchemical Journal, 2018, 141, 40-50.	2.3	9
14	Neutron radiography as a tool for assessing penetration depth and distribution of a phosphate consolidant for limestone. Construction and Building Materials, 2018, 187, 238-247.	3.2	11
15	What's underneath? A non-destructive depth profile of painted stratigraphies by synchrotron grazing incidence X-ray diffraction. Analyst, The, 2018, 143, 4290-4297.	1.7	10
16	Contrasting confocal XRF with micro-SORS: a deep view within micrometric painted stratigraphy. Analytical Methods, 2018, 10, 3837-3844.	1.3	8
17	Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst, The, 2017, 142, 351-355.	1.7	29
18	Discovering Hidden Painted Images: Subsurface Imaging Using Microscale Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2017, 89, 792-798.	3.2	25

CHIARA COLOMBO

#	Article	IF	CITATIONS
19	Investigation of Heterogeneous Painted Systems by Micro-Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2017, 89, 11476-11483.	3.2	11
20	Development of defocusing micro-SORS mapping: a study of a 19 th century porcelain card. Analytical Methods, 2017, 9, 6435-6442.	1.3	14
21	Development of neutron imaging quantitative data treatment to assess conservation products in cultural heritage. Analytical and Bioanalytical Chemistry, 2017, 409, 6133-6139.	1.9	17
22	Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst, The, 2016, 141, 4599-4607.	1.7	56
23	Development of portable defocusing micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 3012-3019.	1.7	25
24	Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160049.	1.6	14
25	Fluorescence suppression using micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 5374-5381.	1.7	21
26	Investigation of ammonium oxalate diffusion in carbonatic substrates by neutron tomography. Journal of Cultural Heritage, 2016, 19, 463-466.	1.5	17
27	Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers. Applied Spectroscopy, 2016, 70, 156-161.	1.2	10
28	Monte Carlo Simulations of Subsurface Analysis of Painted Layers in Micro-Scale Spatially Offset Raman Spectroscopy. Applied Spectroscopy, 2015, 69, 1091-1095.	1.2	23
29	Subsurface analysis of painted sculptures and plasters using micrometreâ€scale spatially offset Raman spectroscopy (microâ€SORS). Journal of Raman Spectroscopy, 2015, 46, 476-482.	1.2	70
30	Noninvasive Analysis of Thin Turbid Layers Using Microscale Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2015, 87, 5810-5815.	3.2	41
31	Synthesis of calcium oxalate trihydrate: New data by vibrational spectroscopy and synchrotron X-ray diffraction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 721-730.	2.0	44
32	Phase transformation of calcium oxalate dihydrate–monohydrate: Effects of relative humidity and new spectroscopic data. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 413-419.	2.0	59
33	Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. Journal of Cultural Heritage, 2014, 15, 336-338.	1.5	18
34	Subsurface Raman Analysis of Thin Painted Layers. Applied Spectroscopy, 2014, 68, 686-691.	1.2	70
35	Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Analytical and Bioanalytical Chemistry, 2013, 405, 1733-1741.	1.9	15
36	Ammonium oxalate treatment: Evaluation by μ-Raman mapping of the penetration depth in different plasters. Journal of Cultural Heritage, 2011, 12, 372-379.	1.5	34

CHIARA COLOMBO

#	Article	IF	CITATIONS
37	Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 14560.	1.3	54
38	The stucco decorations from St. Lorenzo in Laino (Como, Italy): The materials and the techniques employed by the "Magistri Comaciniâ€: Analytica Chimica Acta, 2008, 630, 91-100.	2.6	26
39	Permanent atrial fibrillation affects exercise capacity in chronic heart failure patients. European Heart Journal, 2008, 29, 2367-2372.	1.0	73
40	Thin Lead Sheets in the Decorative Features in Pavia Charterhouse. Annali Di Chimica, 2006, 96, 525-535.	0.6	1
41	Polychromy on stone bas-reliefs: the case of the basilica of Saint-Ambrogio in Milan. Journal of Cultural Heritage, 2005, 6, 79-88.	1.5	8
42	Oxalate Films and Red Stains on Carrara Marble. Annali Di Chimica, 2005, 95, 217-226.	0.6	11
43	Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Applied Optics, 2004, 43, 2175.	2.1	75