List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Low Impedance Points Along Railway Tracks From a Railroad Inspection Vehicle. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1807-1817.	4.7	0
2	Analysis of a Fast Control Allocation approach for nonlinear over-actuated systems. ISA Transactions, 2022, 126, 545-561.	3.1	7
3	A hybrid algorithm for the unit commitment problem with wind uncertainty. Electrical Engineering, 2022, 104, 1093-1110.	1.2	2
4	Deformable convolutions in multi-view stereo. Image and Vision Computing, 2022, 118, 104369.	2.7	2
5	Coverage Path Planning Optimization Based on Point Cloud for Structural Inspection. Springer Tracts in Nature-inspired Computing, 2022, , 141-156.	1.2	2
6	Hybrid methodology based on computational vision and sensor fusion for assisting autonomous UAV on offshore messenger cable transfer operation. Robotica, 2022, 40, 2786-2814.	1.3	16
7	An edge–fog architecture for distributed 3D reconstruction. Future Generation Computer Systems, 2022, 135, 146-158.	4.9	1
8	An Edge-Fog Architecture for Distributed 3D Reconstruction and Remote Monitoring of a Power Plant Site in the Context of 5G. Sensors, 2022, 22, 4494.	2.1	1
9	Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	4
10	ARCog: An Aerial Robotics Cognitive Architecture. Robotica, 2021, 39, 483-502.	1.3	20
11	Innovative Analysis for Parameter Estimation Quality. International Journal of Control, Automation and Systems, 2021, 19, 363-371.	1.6	6
12	Project and Control Allocation of a 3 DoF Autonomous Surface Vessel With Aerial Azimuth Propulsion System. IEEE Access, 2021, 9, 5212-5227.	2.6	6
13	Spillage Forecast Models in Hydroelectric Power Plants Using Information from Telemetry Stations and Hydraulic Control. Energies, 2021, 14, 184.	1.6	3
14	Development of Optimal Parameter Estimation Methodologies Applied to a 3DOF Autonomous Surface Vessel. IEEE Access, 2021, 9, 50035-50049.	2.6	5
15	Hull and Aerial Holonomic Propulsion System Design for Optimal Underwater Sensor Positioning in Autonomous Surface Vessels. Sensors, 2021, 21, 571.	2.1	14
16	Empirical Models Applied to Distributed Energy Resources—An Analysis in the Light of Regulatory Aspects. Energies, 2021, 14, 326.	1.6	6
17	Attention-Based Convolution Skip Bidirectional Long Short-Term Memory Network for Speech Emotion Recognition. IEEE Access, 2021, 9, 5332-5342.	2.6	14
18	Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs. Sensors, 2021, 21, 1108.	2.1	26

2

LEONARDO M HONÃ³rio

#	Article	IF	CITATIONS
19	Loading Condition Estimation Using Long-Period Fiber Grating Array. IEEE Sensors Journal, 2021, 21, 6202-6208.	2.4	6
20	Evaluating the Impact of Streamflow Rating Curve Precision on Firm Energy of Hydropower Plants. Water (Switzerland), 2021, 13, 1016.	1.2	2
21	Fast Real-Time Control Allocation Applied to Over-Actuated Quadrotor Tilt-Rotor. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 102, 1.	2.0	15
22	Photogrammetric Process to Monitor Stress Fields Inside Structural Systems. Sensors, 2021, 21, 4023.	2.1	4
23	Performance Evaluation of Bundle Adjustment with Population Based Optimization Algorithms Applied to Panoramic Image Stitching. Sensors, 2021, 21, 5054.	2.1	6
24	<scp>mâ€ISODATA</scp> : Unsupervised clustering algorithm to capture representative scenarios in power systems. International Transactions on Electrical Energy Systems, 2021, 31, e13005.	1.2	3
25	Load frequency control and tie-line damping via virtual synchronous generator. International Journal of Electrical Power and Energy Systems, 2021, 132, 107108.	3.3	13
26	A Framework for Coverage Path Planning Optimization Based on Point Cloud for Structural Inspection. Sensors, 2021, 21, 570.	2.1	31
27	A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition. Applied Sciences (Switzerland), 2021, 11, 9897.	1.3	12
28	Model and Validation of the Electromagnetic Interference Produced by Power Transmission Lines in Robotic Systems. , 2021, , .		2
29	Detection and Classification System for Rail Surface Defects Based on Eddy Current. Sensors, 2021, 21, 7937.	2.1	21
30	Unmanned aerial vehicle for transmission line inspection using an extended Kalman filter with colored electromagnetic interference. ISA Transactions, 2020, 100, 322-333.	3.1	34
31	Robust Static Transmission Expansion Planning Considering Contingency and Wind Power Generation. Journal of Control, Automation and Electrical Systems, 2020, 31, 461-470.	1.2	10
32	A Heterogeneous Edge-Fog Environment Supporting Digital Twins for Remote Inspections. Sensors, 2020, 20, 5296.	2.1	4
33	Sensors Fusion and Multidimensional Point Cloud Analysis for Electrical Power System Inspection. Sensors, 2020, 20, 4042.	2.1	5
34	3D Correspondence and Point Projection Method for Structures Deformation Analysis. IEEE Access, 2020, 8, 177823-177836.	2.6	22
35	A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors, 2020, 20, 4579.	2.1	24
36	Daily Water Flow Forecasting via Coupling Between SMAP and Deep Learning. IEEE Access, 2020, 8, 204660-204675.	2.6	11

#	Article	IF	CITATIONS
37	Correlated Time-Series in Multi-Day-Ahead Streamflow Forecasting Using Convolutional Networks. IEEE Access, 2020, 8, 215748-215757.	2.6	9
38	Identification and Localization of Track Circuit False Occupancy Failures Based on Frequency Domain Reflectometry. Sensors, 2020, 20, 7259.	2.1	5
39	Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data. Sensors, 2020, 20, 6187.	2.1	10
40	Hydroelectric Operation Optimization and Unexpected Spillage Indications. Energies, 2020, 13, 5368.	1.6	3
41	Recursive Approach of Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation. International Journal of Control, Automation and Systems, 2020, 18, 1965-1974.	1.6	6
42	Fuzzy system applied to a hydraulic turbine efficiency curve fitting. Electrical Engineering, 2020, 102, 1361-1370.	1.2	2
43	Turbines Allocation Optimization in Hydro Plants via Computational Intelligence. Advances in Intelligent Systems and Computing, 2020, , 314-329.	0.5	0
44	Coverage Path Planning Optimization for Slopes and Dams Inspection. Advances in Intelligent Systems and Computing, 2020, , 513-523.	0.5	7
45	Ant Colony Optimization Algorithm and Artificial Immune System Applied to a Robot Route. , 2019, , .		5
46	ML4IoT: A Framework to Orchestrate Machine Learning Workflows on Internet of Things Data. IEEE Access, 2019, 7, 152953-152967.	2.6	12
47	Detection Time Analysis of Propulsion System Fault Effects in a Hexacopter. , 2019, , .		3
48	A Framework for Analyzing Fog-Cloud Computing Cooperation Applied to Information Processing of UAVs. Wireless Communications and Mobile Computing, 2019, 2019, 1-14.	0.8	42
49	Persistently-exciting signal generation for Optimal Parameter Estimation of constrained nonlinear dynamical systems. ISA Transactions, 2018, 77, 231-241.	3.1	17
50	A multiple kernel classification approach based on a Quadratic Successive Geometric Segmentation methodology with a fault diagnosis case. ISA Transactions, 2018, 74, 209-216.	3.1	18
51	Signal Estimation for UAV Control Loop Identification Using Artificial Immune Systems. , 2018, , .		7
52	Experimental Validation of Quadrotors Angular Stability in a Gyroscopic Test Bench. , 2018, , .		11
53	Automatic Recognition of Electrical Grid Elements using Convolutional Neural Networks. , 2018, , .		1
54	Project and Design of Multi-Rate Loop Controllers for Fixed-Wings Aircrafts. , 2018, , .		6

#	Article	IF	CITATIONS
55	Efficient hybrid algorithm for transmission expansion planning. Electrical Engineering, 2018, 100, 2765-2777.	1.2	18
56	UAV vision aided positioning system for location and landing. , 2017, , .		20
57	Simulation and comparison between a linear and nonlinear technique applied to altitude control in quadcopters. , 2017, , .		16
58	Landing area recognition by image applied to an autonomous control landing of VTOL aircraft. , 2017, ,		12
59	Tree searching heuristic algorithm for multi-stage transmission planning considering security constraints via genetic algorithm. Electric Power Systems Research, 2017, 142, 290-297.	2.1	27
60	Design of angular PID controllers for quadcopters built with low cost equipment. , 2016, , .		20
61	Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing. Optical Engineering, 2016, 55, 034107.	0.5	7
62	A Successive Geometric Segmentation Approach Applied to Double-Circuit Transmission Lines Fault Classification and Location. Journal of Control, Automation and Electrical Systems, 2016, 27, 452-462.	1.2	3
63	Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms. Electric Power Systems Research, 2016, 133, 173-181.	2.1	39
64	Transmission line reinforcements considering security constraints. , 2015, , .		1
65	Optimal transient droop compensator and PID tuning for load frequency control in hydro power systems. International Journal of Electrical Power and Energy Systems, 2015, 68, 345-355.	3.3	30
66	Modified Successive Geometric Segmentation Method Applied to Power Transformers Faults Diagnosis. Journal of Control, Automation and Electrical Systems, 2015, 26, 159-169.	1.2	2
67	A Coupled Model to Multistage Transmission Expansion Planning. Journal of Control, Automation and Electrical Systems, 2015, 26, 272-282.	1.2	3
68	Active Fault-Tolerant Control applied to a hexacopter under propulsion system failures. , 2015, , .		16
69	An optimal power flow based on safety barrier interior point method. International Journal of Electrical Power and Energy Systems, 2015, 64, 977-985.	3.3	46
70	Construction of Artificial Neural Networks for Pattern Recognition Using a Successive Geometric Segmentation Method. Journal of Control, Automation and Electrical Systems, 2014, 25, 319-329.	1.2	3
71	Construction of Artificial Neural Networks for Pattern Recognition Using a Successive Geometric Segmentation Method. Journal of Control, Automation and Electrical Systems, 2014, 25, 319.	1.2	2
72	Linear Programming for Optimum PID Controller Tuning. Applied Mathematics, 2014, 05, 886-897.	0.1	7

#	Article	IF	CITATIONS
73	A Cluster and Gradient-Based Artificial Immune System Applied in Optimization Scenarios. IEEE Transactions on Evolutionary Computation, 2012, 16, 301-318.	7.5	24
74	Performance comparison of metaheuristics to solve the multi-stage transmission expansion planning problem. IET Generation, Transmission and Distribution, 2011, 5, 360.	1.4	52
75	Solving optimal power flow problems using a probabilistic -constrained evolutionary approach. IET Generation, Transmission and Distribution, 2010, 4, 674.	1.4	21
76	Lagrangian Method Based on Population Applied to Optimal Power Flow Problems. , 2009, , .		2
77	Artificial Immune System Applied to the Multi-stage Transmission Expansion Planning. Lecture Notes in Computer Science, 2009, , 178-191.	1.0	17
78	Artificial Immune Systems and Differential Evolution Based Approaches Applied to Multi-Stage Transmission Expansion Planning. , 2009, , .		6
79	Concepts of Aspect-Oriented Modeling Applied to Optimal Power Flow Problems. , 2009, , .		2
80	Learning Fuzzy Systems by a Co-Evolutionary Artificial-Immune-Based Algorithm. Lecture Notes in Computer Science, 2009, , 312-319.	1.0	1
81	Dynamic Polymorphic Agents Scheduling and Execution Using Artificial Immune Systems. Lecture Notes in Computer Science, 2008, , 166-175.	1.0	9
82	Intelligent Optimal Power Flow System Development Using Aspect-Oriented Modeling. IEEE Transactions on Power Systems, 2007, 22, 1826-1834.	4.6	5
83	A Gradient-Based Artificial Immune System Applied to Optimal Power Flow Problems. Lecture Notes in Computer Science, 2007, , 1-12.	1.0	27
84	Increasing the Loadability of Power Systems Through Optimal-Local-Control Actions. IEEE Transactions on Power Systems, 2004, 19, 188-194.	4.6	39
85	Exercising reactive market power through sensitivity studies and HHI. , O, , .		14
86	Controle De Altitude De Um Motor-Hélice Utilizando O Algoritmo De Golub-Householder Para Modelagem Não-Linear E Algoritmos Genéticos Para Sintonia Do Controlador. , 0, , .		0
87	An IIoT Edge Environment as a Main Support to a 3D Reconstruction Virtualization Application. , 0, , .		2