David H Gracias

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8490774/david-h-gracias-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 197
 10,430
 56
 98

 papers
 citations
 h-index
 g-index

 224
 11,804
 8.8
 6.52

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
197	Integrated Nanotechnology 2.0: 3D, Smart, Flexible, and Dynamic [Highlights]. <i>IEEE Nanotechnology Magazine</i> , 2022 , 16, 11-15	1.7	
196	Label-Free Spectroscopic SARS-CoV-2 Detection on Versatile Nanoimprinted Substrates <i>Nano Letters</i> , 2022 ,	11.5	7
195	Directing Multicellular Organization by Varying the Aspect Ratio of Soft Hydrogel Microwells <i>Advanced Science</i> , 2022 , e2104649	13.6	2
194	Magnetic Resonance Guided Navigation of Untethered Microgrippers. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2000869	10.1	6
193	Controlled Nanoscale Cracking of Graphene Ribbons by Polymer Shrinkage. <i>ACS Applied Nano Materials</i> , 2021 , 4, 1529-1539	5.6	
192	Solvent Responsive Self-Folding of 3D Photosensitive Graphene Architectures. <i>Advanced Intelligent Systems</i> , 2020 , 2000195	6	2
191	Untethered Single Cell Grippers for Active Biopsy. <i>Nano Letters</i> , 2020 , 20, 5383-5390	11.5	24
190	Bidirectional Propulsion of Arc-Shaped Microswimmers Driven by Precessing Magnetic Fields. <i>Advanced Intelligent Systems</i> , 2020 , 2, 2000064	6	6
189	3D Printing of an Grown MOF Hydrogel with Tunable Mechanical Properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 33267-33275	9.5	25
188	Active matter therapeutics. <i>Nano Today</i> , 2020 , 31,	17.9	27
187	3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 104, 1036.	4 9 1	28
186	Biomimetic human small muscular pulmonary arteries. <i>Science Advances</i> , 2020 , 6, eaaz2598	14.3	10
185	Substrate-directed synthesis of MoS nanocrystals with tunable dimensionality and optical properties. <i>Nature Nanotechnology</i> , 2020 , 15, 29-34	28.7	55
184	Self-Folding Using Capillary Forces. Advanced Materials Interfaces, 2020, 7, 1901677	4.6	10
183	Large-Area Arrays of Quasi-3D Au Nanostructures for Polarization-Selective Mid-Infrared Metasurfaces. <i>ACS Applied Nano Materials</i> , 2020 , 3, 7029-7039	5.6	3
182	Multicomponent DNA Polymerization Motor Gels. Small, 2020, 16, e2002946	11	5
181	Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. <i>Science Advances</i> , 2020 , 6,	14.3	23

180	Dual-Gel 4D Printing of Bioinspired Tubes. ACS Applied Materials & amp; Interfaces, 2019, 11, 8492-8498	9.5	60
179	Soft Three-Dimensional Robots with Hard Two-Dimensional Materials. <i>ACS Nano</i> , 2019 , 13, 4883-4892	16.7	36
178	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043	6.8	141
177	Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. <i>ACS Applied Materials & Discours (Page 19</i> , 11, 28289-28295	9.5	20
176	Force characterization and analysis of thin film actuators for untethered microdevices. <i>AIP Advances</i> , 2019 , 9, 055011	1.5	5
175	Periodic buckling of soft 3D printed bioinspired tubes. <i>Extreme Mechanics Letters</i> , 2019 , 30, 100514	3.9	12
174	Reversible MoS Origami with Spatially Resolved and Reconfigurable Photosensitivity. <i>Nano Letters</i> , 2019 , 19, 7941-7949	11.5	33
173	Nano-folded Gold Catalysts for Electroreduction of Carbon Dioxide. <i>Nano Letters</i> , 2019 , 19, 9154-9159	11.5	17
172	Hierarchically Curved Gelatin for 3D Biomimetic Cell Culture ACS Applied Bio Materials, 2019, 2, 6004-6	604.1	3
171	Self-Folding Hybrid Graphene Skin for 3D Biosensing. <i>Nano Letters</i> , 2019 , 19, 1409-1417	11.5	36
171 170	Self-Folding Hybrid Graphene Skin for 3D Biosensing. <i>Nano Letters</i> , 2019 , 19, 1409-1417 Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432		36
170	Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432 Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. <i>ACS Applied Materials</i>	3.8	14
170 169	Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432 Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. <i>ACS Applied Materials & Description of Edition on Platinum Electrocatalysts</i> . <i>Topics</i>	3.8 9.5 2.3	14
170 169 168	Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432 Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 151-159 Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts. <i>Topics in Catalysis</i> , 2018 , 61, 1035-1042	3.8 9.5 2.3	14 44 7
170 169 168	Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432 Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 151-159 Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts. <i>Topics in Catalysis</i> , 2018 , 61, 1035-1042 Ultrathin Shape Change Smart Materials. <i>Accounts of Chemical Research</i> , 2018 , 51, 436-444 Multitemperature Responsive Self-Folding Soft Biomimetic Structures. <i>Macromolecular Rapid</i>	3.8 9.5 2.3 24.3	14 44 7 35
170 169 168 167 166	Electrocatalytic Oxidation of Glycerol on Platinum. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 426-432 Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. <i>ACS Applied Materials & Acs Applied & Acs Applied & Acs Applied & Acs Applied & Acs Applie</i>	3.8 9.5 2.3 24.3 4.8	14 44 7 35 36

162	3D Hybrid Small Scale Devices. <i>Small</i> , 2018 , 14, e1702497	11	4
161	Developing and characterizing human biomimetic arteriole for studying pulmonary hypertension. <i>FASEB Journal</i> , 2018 , 32, 568.16	0.9	
160	A GPU-Accelerated Model-Based Tracker for Untethered Submillimeter Grippers. <i>Robotics and Autonomous Systems</i> , 2018 , 103, 111-121	3.5	4
159	Biosystem Assembly: Origami Biosystems: 3D Assembly Methods for Biomedical Applications (Adv. Biosys. 12/2018). <i>Advanced Biology</i> , 2018 , 2, 1870113	3.5	1
158	A Multi-Rate State Observer for Visual Tracking of Magnetic Micro-Agents Using 2D Slow Medical Imaging Modalities 2018 ,		4
157	Sub-wavelength field enhancement in the mid-IR: photonics versus plasmonics versus phononics. <i>Optics Letters</i> , 2018 , 43, 4465-4468	3	3
156	Origami Biosystems: 3D Assembly Methods for Biomedical Applications. <i>Advanced Biology</i> , 2018 , 2, 180	032.33.0	39
155	Mechanical Trap Surface-Enhanced Raman Spectroscopy for Three-Dimensional Surface Molecular Imaging of Single Live Cells. <i>Angewandte Chemie</i> , 2017 , 129, 3880-3884	3.6	17
154	Mechanical Trap Surface-Enhanced Raman Spectroscopy for Three-Dimensional Surface Molecular Imaging of Single Live Cells. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3822-3826	16.4	59
153	Autonomous planning and control of soft untethered grippers in unstructured environments. <i>Journal of Micro-Bio Robotics</i> , 2017 , 12, 45-52	1.4	44
152	Frontispiece: Mechanical Trap Surface-Enhanced Raman Spectroscopy for Three-Dimensional Surface Molecular Imaging of Single Live Cells. <i>Angewandte Chemie - International Edition</i> , 2017 , 56,	16.4	1
151	Ultrathin thermoresponsive self-folding 3D graphene. <i>Science Advances</i> , 2017 , 3, e1701084	14.3	110
150	Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface. <i>PLoS ONE</i> , 2017 , 12, e0187441	3.7	15
149	DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. <i>Science</i> , 2017 , 357, 1126-1130	33.3	227
148	Bidirectional and biaxial curving of thermoresponsive bilayer plates with soft and stiff segments. <i>Extreme Mechanics Letters</i> , 2017 , 16, 6-12	3.9	16
147	Magnetic Motion Control and Planning of Untethered Soft Grippers using Ultrasound Image Feedback. <i>IEEE International Conference on Robotics and Automation: ICRA: [proceedings]</i> , 2017 , 2017, 6156-6161	2.2	15
146	Pneumatic delivery of untethered microgrippers for minimally invasive biopsy 2017 , 2017, 857-860		5
145	Limits of imaging with multilayer hyperbolic metamaterials. <i>Optics Express</i> , 2017 , 25, 13588-13601	3.3	18

(2014-2017)

144	Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery. <i>Frontiers in Mechanical Engineering</i> , 2017 , 3,	2.6	69
143	Janus and patchy nanoparticles: general discussion. <i>Faraday Discussions</i> , 2016 , 191, 117-139	3.6	3
142	Evaluation of an electromagnetic system with haptic feedback for control of untethered, soft grippers affected by disturbances 2016 ,		9
141	Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes. <i>ACS Nano</i> , 2016 , 10, 5835-46	16.7	24
140	A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 398-407	2.9	26
139	Self-folding nanostructures with imprint patterned surfaces (SNIPS). Faraday Discussions, 2016, 191, 61	-7316	12
138	Assembly of a 3D Cellular Computer Using Folded E-Blocks. <i>Micromachines</i> , 2016 , 7,	3.3	7
137	Self-folding microcube antennas for wireless power transfer in dispersive media 2016 , 04, 120-129		8
136	Origami-Inspired 3D Assembly of Egg-Crate Shaped Metamaterials Using Stress and Surface Tension Forces. <i>MRS Advances</i> , 2016 , 1, 1743-1748	0.7	1
135	Control of Untethered Soft Grippers for Pick-and-Place Tasks 2016 , 2016, 299-304	2.3	14
134	Origami MEMS and NEMS. MRS Bulletin, 2016 , 41, 123-129	3.2	211
133	Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton. <i>Advanced Healthcare Materials</i> , 2016 , 5, 146-58	10.1	10
132	Self-folding graphene-polymer bilayers. <i>Applied Physics Letters</i> , 2015 , 106, 203108	3.4	50
131	Miniaturized Untethered Tools for Surgery. Advanced Micro & Nanosystems, 2015, 201-234		1
130	Controlled Release: A Chemical Display: Generating Animations by Controlled Diffusion from Porous Voxels (Adv. Funct. Mater. 26/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 3982-3982	15.6	1
129	A Chemical Display: Generating Animations by Controlled Diffusion from Porous Voxels. <i>Advanced Functional Materials</i> , 2015 , 25, 3998-4004	15.6	5
128	Self-folding thermo-magnetically responsive soft microgrippers. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 3398-405	9.5	341
127	Stimuli-responsive theragrippers for chemomechanical controlled release. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8045-8049	16.4	146

126	Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 513-21	5	142
125	Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. <i>Nano Letters</i> , 2014 , 14, 4197-204	11.5	59
124	Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. <i>Angewandte Chemie</i> , 2014 , 126, 8183-8187	3.6	36
123	Building polyhedra by self-assembly: theory and experiment. <i>Artificial Life</i> , 2014 , 20, 409-39	1.4	12
122	Self-folding single cell grippers. <i>Nano Letters</i> , 2014 , 14, 4164-70	11.5	112
121	Functional stimuli responsive hydrogel devices by self-folding. <i>Smart Materials and Structures</i> , 2014 , 23, 094008	3.4	112
120	Silane surface modification for improved bioadhesion of esophageal stents. <i>Applied Surface Science</i> , 2014 , 311, 684-689	6.7	19
119	Self-assembly of mesoscale isomers: the role of pathways and degrees of freedom. <i>PLoS ONE</i> , 2014 , 9, e108960	3.7	7
118	Curved and folded micropatterns in 3D cell culture and tissue engineering. <i>Methods in Cell Biology</i> , 2014 , 121, 121-39	1.8	5
117	Ultra-small energy harvesting microsystem for biomedical applications 2014,		2
116	Three dimensional self-assembly at the nanoscale 2013 ,		2
115	Micro antennas for implantable medical devices 2013,		4
114	Biologic tissue sampling with untethered microgrippers. <i>Gastroenterology</i> , 2013 , 144, 691-3	13.3	23
113	Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. <i>Nanoscale</i> , 2013 , 5, 1294-1297	7.7	181
112	3D printed bionic ears. <i>Nano Letters</i> , 2013 , 13, 2634-9	11.5	626
111	Stimuli responsive self-folding using thin polymer films. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 112-119	5.4	139
110	Tissue Engineering: Bio-Origami Hydrogel Scaffolds Composed of Photocrosslinked PEG Bilayers (Adv. Healthcare Mater. 8/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 1066-1066	10.1	9
109	Design for a lithographically patterned bioartificial endocrine pancreas. Artificial Organs, 2013, 37, 105	9- <u>6</u> .7	14

108	A cellular architecture for self-assembled 3D computational devices 2013 ,		3
107	Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1142-50	10.1	160
106	Origami inspired self-assembly of patterned and reconfigurable particles. <i>Journal of Visualized Experiments</i> , 2013 , e50022	1.6	17
105	Stimuli Responsive Materials: Biopsy with Thermally-Responsive Untethered Microtools (Adv. Mater. 4/2013). <i>Advanced Materials</i> , 2013 , 25, 494-494	24	1
104	Biopsy with thermally-responsive untethered microtools. <i>Advanced Materials</i> , 2013 , 25, 514-9	24	160
103	Self-folding devices and materials for biomedical applications. <i>Trends in Biotechnology</i> , 2012 , 30, 138-46	5 15.1	181
102	3D small antenna for energy harvesting applications on implantable micro-devices 2012,		5
101	Chemistry with spatial control using particles and streams(). RSC Advances, 2012, 2, 9707-9726	3.7	11
100	Self-propelled nanotools. ACS Nano, 2012 , 6, 1751-6	16.7	333
99	Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching. <i>Nano Letters</i> , 2012 , 12, 3437-42	11.5	47
98	Self-folding thin-film materials: From nanopolyhedra to graphene origami. MRS Bulletin, 2012, 37, 847-8	35,42	100
97	Nanowire-based surface-enhanced Raman spectroscopy (SERS) for chemical warfare simulants 2012 ,		2
96	Self-folding polymeric containers for encapsulation and delivery of drugs. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 1579-89	18.5	201
95	Initiation of nanoporous energetic silicon by optically-triggered, residual stress powered microactuators 2012 ,		2
94	Laser triggered sequential folding of microstructures. <i>Applied Physics Letters</i> , 2012 , 101, 131901	3.4	54
93	Dielectrophoretic assembly of ordered nanostructures: Harnessing thermal randomness and inter-particle interactions 2012 ,		1
92	Building 3D Nanostructured Devices by Self-Assembly 2011 , 1-28		
91	Three-dimensional microwell arrays for cell culture. <i>Lab on A Chip</i> , 2011 , 11, 127-31	7.2	59

90	Differentially photo-crosslinked polymers enable self-assembling microfluidics. <i>Nature Communications</i> , 2011 , 2, 527	17.4	189
89	Self-folding immunoprotective cell encapsulation devices. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 686-9	6	34
88	Self-folding micropatterned polymeric containers. <i>Biomedical Microdevices</i> , 2011 , 13, 51-8	3.7	124
87	Enabling cargo-carrying bacteria via surface attachment and triggered release. <i>Small</i> , 2011 , 7, 588-92	11	60
86	Nanoscale origami for 3D optics. Small, 2011 , 7, 1943-8	11	121
85	3D Nanofabrication: Nanoscale Origami for 3D Optics (Small 14/2011). Small, 2011 , 7, 1850-1850	11	О
84	Microchemomechanical Systems. Advanced Functional Materials, 2011, 21, 2395-2410	15.6	53
83	Three-Dimensional Chemical Patterns for Cellular Self-Organization. <i>Angewandte Chemie</i> , 2011 , 123, 2597-2601	3.6	1
82	Innentitelbild: Three-Dimensional Chemical Patterns for Cellular Self-Organization (Angew. Chem. 11/2011). <i>Angewandte Chemie</i> , 2011 , 123, 2456-2456	3.6	
81	Three-dimensional chemical patterns for cellular self-organization. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2549-53	16.4	23
80	Inside Cover: Three-Dimensional Chemical Patterns for Cellular Self-Organization (Angew. Chem. Int. Ed. 11/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2408-2408	16.4	
79	Tetherless Microgrippers With Transponder Tags. <i>Journal of Microelectromechanical Systems</i> , 2011 , 20, 505-511	2.5	16
78	Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. <i>Nanoscale</i> , 2011 , 3, 1059	9-565	20
77	Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. <i>Nanotechnology</i> , 2011 , 22, 455303	3.4	4
76	Algorithmic design of self-folding polyhedra. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19885-90	11.5	78
75	Fabrication and Applications of Three Dimensional Porous Microwells. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1272, 1		
74	A three dimensional self-folding package (SFP) for electronics. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1249, 1		3
73	Three-dimensional surface current loops in terahertz responsive microarrays. <i>Applied Physics Letters</i> , 2010 , 96, 191108	3.4	16

(2009-2010)

72	Enzymatically triggered actuation of miniaturized tools. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16314-7	16.4	95
71	Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. <i>Nano Letters</i> , 2010 , 10, 5098-102	11.5	26
70	Importance of surface patterns for defect mitigation in three-dimensional self-assembly. <i>Langmuir</i> , 2010 , 26, 12534-9	4	26
69	Three dimensional nanofabrication using surface forces. <i>Langmuir</i> , 2010 , 26, 16534-9	4	48
68	Capillary And Magnetic Forces For Microscale Self-Assembled Systems. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1272, 1		
67	Fabrication of 3D nanostructures with lithographically patterned surfaces by self-folding 2010 ,		3
66	A one-step etching method to produce gold nanoparticle coated silicon microwells and microchannels. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 2949-54	4.4	5
65	Electrochemically grown rough-textured nanowires. Journal of Nanoparticle Research, 2010, 12, 1065-10	072	4
64	Reversible actuation of microstructures by surface-chemical modification of thin-film bilayers. <i>Advanced Materials</i> , 2010 , 22, 407-10	24	47
63	Curving nanostructures using extrinsic stress. <i>Advanced Materials</i> , 2010 , 22, 2320-4	24	55
62	Nanofabrication: Curving Nanostructures Using Extrinsic Stress (Adv. Mater. 21/2010). <i>Advanced Materials</i> , 2010 , 22, n/a-n/a	24	1
61	Spatiotemporally Controlled Nanoliter-Scale Reconfigurable Microfluidics 2010 , 39-62		
60	Photolithographically patterned smart hydrogel based bilayer actuators. <i>Polymer</i> , 2010 , 51, 6093-6098	3.9	185
59	Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds. <i>Biomaterials</i> , 2010 , 31, 1683-90	15.6	81
58	Three-dimensional fabrication at small size scales. <i>Small</i> , 2010 , 6, 792-806	11	212
57	Microassembly based on hands free origami with bidirectional curvature. <i>Applied Physics Letters</i> , 2009 , 95, 91901	3.4	110
56	Self-Assembly of Three-Dimensional Nanoporous Containers. <i>Nano</i> , 2009 , 4, 1-5	1.1	11
55	Tetherless thermobiochemically actuated microgrippers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 703-8	11.5	299

53	Hierarchical self-assembly of complex polyhedral microcontainers. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 1-6	2	27
52	A Facile Method for Patterning Substrates with Zinc Oxide Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1174, 105		
51	Self-assembly of lithographically patterned nanoparticles. <i>Nano Letters</i> , 2009 , 9, 4049-52	11.5	90
50	Size selective sampling using mobile, 3D nanoporous membranes. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 1217-24	4.4	14
49	Toward a miniaturized mechanical surgeon. <i>Materials Today</i> , 2009 , 12, 14-20	21.8	53
48	Patternable nanowire sensors for electrochemical recording of dopamine. <i>Analytical Chemistry</i> , 2009 , 81, 9979-84	7.8	45
47	. Journal of Microelectromechanical Systems, 2009 , 18, 784-791	2.5	38
46	Compactness determines the success of cube and octahedron self-assembly. PLoS ONE, 2009, 4, e4451	3.7	30
45	Hyperthermia with magnetic nanowires for inactivating living cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 2323-7	1.3	45
44	Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells. <i>Lab on A Chip</i> , 2008 , 8, 1621-4	7.2	59
43	. Journal of Microelectromechanical Systems, 2008 , 17, 265-271	2.5	11
42	Solvent driven motion of lithographically fabricated gels. <i>Langmuir</i> , 2008 , 24, 12158-63	4	69
41	Pick-and-place using chemically actuated microgrippers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17238-9	16.4	83
40	Concentric ring pattern formation in heated chromium-gold thin films on silicon. <i>Applied Physics Letters</i> , 2008 , 92, 211907	3.4	4
39	Self-assembly of orthogonal three-axis sensors. <i>Applied Physics Letters</i> , 2008 , 93, 043505	3.4	31
38	NANOWIRE ASSEMBLY AND INTEGRATION 2008 , 187-211		3

(2004-2008)

36	Patterning Thin Film Mechanical Properties to Drive Assembly of Complex 3D Structures. <i>Advanced Materials</i> , 2008 , 20, 4760-4764	24	50
35	Surface tension-driven self-folding polyhedra. <i>Langmuir</i> , 2007 , 23, 8747-51	4	131
34	Correlations between SFG Spectra and Electrical Properties of Organic Field Effect Transistors. Journal of Physical Chemistry C, 2007 , 111, 13250-13255	3.8	36
33	Three-dimensional electrically interconnected nanowire networks formed by diffusion bonding. <i>Langmuir</i> , 2007 , 23, 979-82	4	30
32	Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4991-4	16.4	26
31	MRI of regular-shaped cell-encapsulating polyhedral microcontainers. <i>Magnetic Resonance in Medicine</i> , 2007 , 58, 1283-7	4.4	8
30	3D lithographically fabricated nanoliter containers for drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2007 , 59, 1547-61	18.5	72
29	Cell viability and noninvasive in vivo MRI tracking of 3D cell encapsulating self-assembled microcontainers. <i>Cell Transplantation</i> , 2007 , 16, 403-8	4	15
28	Integrating nanowires with substrates using directed assembly and nanoscale soldering. <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 62-66	2.6	53
27	Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays. <i>Applied Physics Letters</i> , 2006 , 88, 233118	3.4	48
26	Probing organic field effect transistors in situ during operation using SFG. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6528-9	16.4	70
25	Spatially controlled chemistry using remotely guided nanoliter scale containers. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11336-7	16.4	63
24	Kinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy. <i>Langmuir</i> , 2006 , 22, 1863-8	4	117
23	Reflow and electrical characteristics of nanoscale solder. <i>Small</i> , 2006 , 2, 225-9	11	29
22	Scanning surface-enhanced Raman spectroscopy of silver nanowires 2005 , 5927, 337		1
21	The bonding of nanowire assemblies using adhesive and solder. <i>Jom</i> , 2005 , 57, 60-64	2.1	30
20	Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation. <i>Biomedical Microdevices</i> , 2005 , 7, 341-5	3.7	58
19	Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. <i>Proteomics</i> , 2004 , 4, 2366-76	4.8	119

18	Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive. <i>Langmuir</i> , 2004 , 20, 11308-11	4	31
17	Fabrication of Micrometer-Scale, Patterned Polyhedra by Self-Assembly. <i>Advanced Materials</i> , 2002 , 14, 235-238	24	141
16	Interaction of fibrinogen with surfaces of end-group-modified polyurethanes: a surface-specific sum-frequency-generation vibrational spectroscopy study. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 62, 254-64		74
15	Biomimetic self-assembly of helical electrical circuits using orthogonal capillary interactions. <i>Applied Physics Letters</i> , 2002 , 80, 2802-2804	3.4	33
14	Biomimetic self-assembly of a functional asymmetrical electronic device. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4937-40	11.5	83
13	Fabrication of a cylindrical display by patterned assembly. <i>Science</i> , 2002 , 296, 323-5	33.3	353
12	Competition of intrinsic and topographically imposed patterns in BBardMarangoni convection. <i>Applied Physics Letters</i> , 2001 , 79, 439-441	3.4	20
11	Forming electrical networks in three dimensions by self-assembly. <i>Science</i> , 2000 , 289, 1170-2	33.3	413
10	Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces. <i>Journal of Applied Physics</i> , 2000 , 87, 3143-3150	2.5	28
9	A study of the glass transition of polypropylene surfaces by sum-frequency vibrational spectroscopy and scanning force microscopy. <i>Chemical Physics</i> , 1999 , 245, 277-284	2.3	65
8	Sum frequency generation (SFG) Burface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solidgas and solidguid interfaces. <i>Applied Physics B: Lasers and</i>	1.9	49
7	Molecular Characterization of Polymer and Polymer Blend Surfaces. Combined Sum Frequency Generation Surface Vibrational Spectroscopy and Scanning Force Microscopy Studies. <i>Accounts of Chemical Research</i> , 1999 , 32, 930-940	24.3	97
6	Surface chemistry-mechanical property relationship of low density polyethylene: an IR+visible sum frequency generation spectroscopy and atomic force microscopy study. <i>Tribology Letters</i> , 1998 , 4, 231-	2358	9
5	Surface Studies of Polymer Blends by Sum Frequency Vibrational Spectroscopy, Atomic Force Microscopy, and Contact Angle Goniometry. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 6225-6230	3.4	51
4	Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies. <i>Langmuir</i> , 1998 , 14, 1458-1464	4	60
3	Continuum Force Microscopy Study of the Elastic Modulus, Hardness and Friction of Polyethylene and Polypropylene Surfaces. <i>Macromolecules</i> , 1998 , 31, 1269-1276	5.5	82
2	Forming low resistance nano-scale contacts using solder reflow		1
1	Interfacial adhesion of thin-film patterned interconnect structures		2