John J Stachowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490580/publications.pdf

Version: 2024-02-01

ΙΟΗΝΙ ΣΤΛΟΗΟΙΜΙCZ

#	Article	IF	CITATIONS
1	Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science, 2006, 314, 787-790.	12.6	3,422
2	Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 2003, 18, 119-125.	8.7	2,316
3	Mutualism, Facilitation, and the Structure of Ecological Communities. BioScience, 2001, 51, 235.	4.9	841
4	Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution, 2007, 22, 465-471.	8.7	774
5	Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8998-9002.	7.1	675
6	Nonlinear partial differential equations and applications: Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15497-15500.	7.1	667
7	BIODIVERSITY, INVASION RESISTANCE, AND MARINE ECOSYSTEM FUNCTION: RECONCILING PATTERN AND PROCESS. Ecology, 2002, 83, 2575-2590.	3.2	465
8	Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 2012, 15, 912-922.	6.4	350
9	Understanding the Effects of Marine Biodiversity on Communities and Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 739-766.	8.3	349
10	Managing for ocean biodiversity to sustain marine ecosystem services. Frontiers in Ecology and the Environment, 2009, 7, 204-211.	4.0	254
11	Biodiversity mediates top–down control in eelgrass ecosystems: a global comparativeâ€experimental approach. Ecology Letters, 2015, 18, 696-705.	6.4	188
12	Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecology Letters, 2007, 10, 849-864.	6.4	183
13	Invasions and Extinctions Reshape Coastal Marine Food Webs. PLoS ONE, 2007, 2, e295.	2.5	179
14	Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Functional Ecology, 2016, 30, 70-78.	3.6	179
15	Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecology Letters, 2005, 9, 051109031307002.	6.4	167
16	Global-Scale Structure of the Eelgrass Microbiome. Applied and Environmental Microbiology, 2017, 83,	3.1	147
17	SEAWEED DIVERSITY ENHANCES NITROGEN UPTAKE VIA COMPLEMENTARY USE OF NITRATE AND AMMONIUM. Ecology, 2006, 87, 2397-2403.	3.2	133
18	Blue Carbon Storage Capacity of Temperate Eelgrass (<scp><i>Zostera marina</i></scp>) Meadows. Global Biogeochemical Cycles, 2018, 32, 1457-1475.	4.9	130

#	Article	IF	CITATIONS
19	Ecological impacts of genotypic diversity in the clonal seagrass <i>Zostera marina</i> . Ecology, 2009, 90, 1412-1419.	3.2	127
20	Microbial communities in sediment from <i>Zostera marina</i> patches, but not the <i>Z.Âmarina</i> leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ, 2017, 5, e3246.	2.0	115
21	DIVERSITY ENHANCES COVER AND STABILITY OF SEAWEED ASSEMBLAGES: THE ROLE OF HETEROGENEITY AND TIME. Ecology, 2008, 89, 3008-3019.	3.2	109
22	Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia, 1996, 105, 377-387.	2.0	108
23	REDUCING PREDATION THROUGH CHEMICALLY MEDIATED CAMOUFLAGE: INDIRECT EFFECTS OF PLANT DEFENSES ON HERBIVORES. Ecology, 1999, 80, 495-509.	3.2	105
24	Behavioral Types of Predator and Prey Jointly Determine Prey Survival: Potential Implications for the Maintenance of Within-Species Behavioral Variation. American Naturalist, 2012, 179, 217-227.	2.1	101
25	MUTUALISM AND CORAL PERSISTENCE: THE ROLE OF HERBIVORE RESISTANCE TO ALGAL CHEMICAL DEFENSE. Ecology, 1999, 80, 2085-2101.	3.2	97
26	Envisioning a Marine Biodiversity Observation Network. BioScience, 2013, 63, 350-361.	4.9	96
27	Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology, 2014, 95, 833-844.	3.2	91
28	Complementarity in marine biodiversity manipulations: Reconciling divergent evidence from field and mesocosm experiments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18842-18847.	7.1	84
29	Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia, 2009, 159, 725-733.	2.0	79
30	The consequences of consumer diversity loss: different answers from different experimental designs. Ecology, 2009, 90, 2879-2888.	3.2	70
31	Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology, 2018, 99, 29-35.	3.2	70
32	MULTIPLE MUTUALISTS PROVIDE COMPLEMENTARY BENEFITS TO THEIR SEAWEED HOST. Ecology, 2005, 86, 2418-2427.	3.2	69
33	Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia, 2008, 155, 519-528.	2.0	63
34	WHOLE-COMMUNITY MUTUALISM: ASSOCIATED INVERTEBRATES FACILITATE A DOMINANT HABITAT-FORMING SEAWEED. Ecology, 2007, 88, 2211-2219.	3.2	57
35	Prey diversity is associated with weaker consumer effects in a metaâ€analysis of benthic marine experiments. Ecology Letters, 2010, 13, 194-201.	6.4	54
36	Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecological Applications, 2018, 28, 1694-1714.	3.8	54

#	Article	IF	CITATIONS
37	Invasion Expansion: Time since introduction best predicts global ranges of marine invaders. Scientific Reports, 2015, 5, 12436.	3.3	48
38	TISSUE TYPE MATTERS: SELECTIVE HERBIVORY ON DIFFERENT LIFE HISTORY STAGES OF AN ISOMORPHIC ALGA. Ecology, 2006, 87, 2255-2263.	3.2	46
39	Local-scale nutrient regeneration facilitates seaweed growth on wave-exposed rocky shores in an upwelling system. Limnology and Oceanography, 2009, 54, 309-317.	3.1	46
40	Multivariate trade-offs, succession, and phenological differentiation in a guild of colonial invertebrates. Ecology, 2010, 91, 3146-3152.	3.2	45
41	Ecological Factors Affecting Community Invasibility. Ecological Studies, 2009, , 215-238.	1.2	41
42	Seagrass genotypic diversity increases disturbance response via complementarity and dominance. Journal of Ecology, 2011, 99, 445-453.	4.0	40
43	Genetic Relatedness Influences Plant Biomass Accumulation in Eelgrass (<i>Zostera marina</i>). American Naturalist, 2013, 181, 715-724.	2.1	38
44	Phylogeny as a Proxy for Ecology in Seagrass Amphipods: Which Traits Are Most Conserved?. PLoS ONE, 2013, 8, e57550.	2.5	37
45	Response of a Habitat-Forming Marine Plant to a Simulated Warming Event Is Delayed, Genotype Specific, and Varies with Phenology. PLoS ONE, 2016, 11, e0154532.	2.5	34
46	Short and long term consequences of increases in exotic species richness on water filtration by marine invertebrates. Ecology Letters, 2009, 12, 830-841.	6.4	33
47	Mechanisms of biotic resistance across complex life cycles. Journal of Animal Ecology, 2014, 83, 296-305.	2.8	32
48	Phenotypic and phylogenetic evidence for the role of food and habitat in the assembly of communities of marine amphipods. Ecology, 2014, 95, 775-786.	3.2	30
49	Size-related habitat shifts facilitated by positive preference induction in a marine kelp crab. Behavioral Ecology, 2010, 21, 329-336.	2.2	29
50	Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28160-28166.	7.1	29
51	Plant–animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover. Ecology, 2014, 95, 1308-1322.	3.2	28
52	Local adaptation in a marine foundation species: Implications for resilience to future global change. Global Change Biology, 2022, 28, 2596-2610.	9.5	26
53	The relative importance of trait vs. genetic differentiation for the outcome of interactions among plant genotypes. Ecology, 2016, 97, 84-94.	3.2	25
54	Seaweed richness and herbivory increase rate of community recovery from disturbance. Ecology, 2012, 93, 879-890.	3.2	24

#	Article	IF	CITATIONS
55	Microbiome succession during ammonification in eelgrass bed sediments. PeerJ, 2017, 5, e3674.	2.0	24
56	Positive and negative effects of a dominant competitor on the settlement, growth, and survival of competing species in an epibenthic community. Journal of Experimental Marine Biology and Ecology, 2011, 399, 130-134.	1.5	22
57	Multiple dimensions of intraspecific diversity affect biomass of eelgrass and its associated community. Ecology, 2017, 98, 3152-3164.	3.2	21
58	Previous exposure mediates the response of eelgrass to future warming via clonal transgenerational plasticity. Ecology, 2020, 101, e03169.	3.2	21
59	Spatially stochastic settlement and the coexistence of benthic marine animals. Ecology, 2011, 92, 1094-1103.	3.2	19
60	Microhabitat partitioning in seagrass mesograzers is driven by consistent species choices across multiple predator and competitor contexts. Oikos, 2016, 125, 1324-1333.	2.7	18
61	Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina. Ecology and Evolution, 2018, 8, 7476-7489.	1.9	17
62	Predicting consequences of climate change for ecosystem functioning: variation across trophic levels, species and individuals. Diversity and Distributions, 2015, 21, 1364-1374.	4.1	15
63	Grazer diversity interacts with biogenic habitat heterogeneity to accelerate intertidal algal succession. Ecology, 2016, 97, 2136-2146.	3.2	15
64	Human-induced reductions in fish predator boldness decrease their predation rates in kelp forests. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182745.	2.6	14
65	Assessing Feeding Preferences of a Consumer Guild: Partitioning Variation Among versus Within Species. American Naturalist, 2018, 192, 287-300.	2.1	13
66	Plant genotype identity and diversity interact with mesograzer species diversity to influence detrital consumption in eelgrass meadows. Oikos, 2018, 127, 327-336.	2.7	11
67	Experimental Warming Enhances Effects of Eelgrass Genetic Diversity Via Temperature-Induced Niche Differentiation. Estuaries and Coasts, 2021, 44, 545-557.	2.2	11
68	Disease surveillance by artificial intelligence links eelgrass wasting disease to ocean warming across latitudes. Limnology and Oceanography, 2022, 67, 1577-1589.	3.1	11
69	Joint effects of patch edges and habitat degradation on faunal predation risk in a widespread marine foundation species. Ecology, 2021, 102, e03316.	3.2	10
70	Spatially stochastic settlement and the coexistence of benthic marine animals. Ecology, 2011, 92, 1094-1103.	3.2	10
71	The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211762.	2.6	9
72	Mimulus Stimpson, 1860, a junior synonym of Pugettia Dana, 1851 (Decapoda: Brachyura: Majoidea: Epialtidae) . Zootaxa, 2013, 3693, 358.	0.5	7

#	Article	IF	CITATIONS
73	Form–function relationships in a marine foundation species depend on scale: a shoot to global perspective from a distributed ecological experiment. Oikos, 2018, 127, 364-374.	2.7	7
74	The effect of a tube-building phoronid on associated infaunal species diversity, composition and community structure. Journal of Experimental Marine Biology and Ecology, 2009, 381, 126-135.	1.5	5
75	Fished species uniformly reduced escape behaviors in response to protection. Biological Conservation, 2018, 226, 238-246.	4.1	4
76	Sequential disturbances alter the outcome of interâ€genotypic interactions in a clonal plant. Functional Ecology, 2021, 35, 127-138.	3.6	3
77	Hidden biodiversity: Spatial mosaics of eelgrass genotypic diversity at the centimeter to meadow scale. Ecology, 2022, 103, .	3.2	3
78	BIODIVERSITY, INVASION RESISTANCE, AND MARINE ECOSYSTEM FUNCTION: RECONCILING PATTERN AND PROCESS. , 2002, 83, 2575.		2
79	Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS ONE, 2022, 17, e0262939.	2.5	2
80	Marine Macrophyte Detritus and Degradation: the Role of Intraspecific Genetic Variation. Estuaries and Coasts, 2018, 41, 1223-1233.	2.2	1
81	Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951–2018). Estuaries and Coasts, 2021, 44, 304-311.	2.2	1
82	Disturbance decreases genotypic diversity by reducing colonization: Implications for disturbance–diversity feedbacks. Ecology, 2022, , e3710.	3.2	1