Ayala Lampel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490009/publications.pdf

Version: 2024-02-01

Δνλιλ Ι λμασι

#	Article	IF	CITATIONS
1	Spatiotemporal Control of Melanin Synthesis in Liquid Droplets. ACS Applied Materials & Interfaces, 2022, 14, 20520-20527.	8.0	4
2	Melaninâ€Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angewandte Chemie, 2021, 133, 7642-7647.	2.0	2
3	Melaninâ€Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angewandte Chemie - International Edition, 2021, 60, 7564-7569.	13.8	22
4	Elucidation of the structure of supramolecular polymorphs in peptide nanofibres using Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 1108-1114.	2.5	3
5	Expanding the Conformational Landscape of Minimalistic Tripeptides by Their <i>O</i> -Glycosylation. Journal of the American Chemical Society, 2021, 143, 19703-19710.	13.7	14
6	Order/Disorder in Protein and Peptideâ€Based Biomaterials. Israel Journal of Chemistry, 2020, 60, 1129-1140.	2.3	20
7	Protonâ€Conductive Melaninâ€Like Fibers through Enzymatic Oxidation of a Selfâ€Assembling Peptide. Advanced Materials, 2020, 32, e2003511.	21.0	38
8	Biology-Inspired Supramolecular Peptide Systems. CheM, 2020, 6, 1222-1236.	11.7	44
9	Guiding principles for peptide nanotechnology through directed discovery. Chemical Society Reviews, 2018, 47, 3737-3758.	38.1	116
10	Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356, 1064-1068.	12.6	244
11	Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Selfâ€Assembling Peptide. Angewandte Chemie - International Edition, 2017, 56, 14511-14515.	13.8	131
12	Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures. CheM, 2016, 1, 298-319.	11.7	170
13	Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures. CheM, 2016, 1, 512.	11.7	11
14	Leaving the Scientific Comfort Zone to Address Complex Challenges. CheM, 2016, 1, 181-183.	11.7	1
15	Targeting the Early Step of Building Block Organization in Viral Capsid Assembly. ACS Chemical Biology, 2015, 10, 1785-1790.	3.4	12
16	α-Aminoisobutyric acid incorporation induces cell permeability and antiviral activity of HIV-1 major homology region fragments. Chemical Communications, 2015, 51, 12349-12352.	4.1	7
17	Monitoring and Targeting the Initial Dimerization Stage of Amyloid Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 2062-2067.	13.8	21
18	Hierarchical multi-step organization during viral capsid assembly. Colloids and Surfaces B: Biointerfaces, 2015, 136, 674-677.	5.0	5

Ayala Lampel

#	Article	IF	CITATIONS
19	Formation of functional super-helical assemblies by constrained single heptad repeat. Nature Communications, 2015, 6, 8615.	12.8	101
20	A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 602-606.	0.7	8
21	The Effect of Chemical Chaperones on the Assembly and Stability of HIV-1 Capsid Protein. PLoS ONE, 2013, 8, e60867.	2.5	15
22	Structural Basis for Inhibiting β-Amyloid Oligomerization by a Non-coded β-Breaker-Substituted Endomorphin Analogue. ACS Chemical Biology, 2011, 6, 1265-1276.	3.4	32