
Luiz Bertassoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014, 26, 85-124.	21.0	1,103
2	Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on A Chip, 2014, 14, 2202-2211.	6.0	759
3	Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6, 024105.	7.1	528
4	Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. Journal of Dental Research, 2015, 94, 143S-152S.	5.2	180
5	The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale. Acta Biomaterialia, 2012, 8, 2419-2433.	8.3	163
6	Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 2018, 34, 389-399.	3.5	154
7	A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication, 2018, 10, 024101.	7.1	135
8	Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nature Communications, 2019, 10, 3520.	12.8	124
9	A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs. Scientific Reports, 2017, 7, 3323.	3.3	98
10	Biomaterials for Craniofacial Bone Regeneration. Dental Clinics of North America, 2017, 61, 835-856.	1.8	94
11	Engineering Pre-vascularized Scaffolds for Bone Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 79-94.	1.6	90
12	Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dental Materials, 2017, 33, 637-649.	3.5	69
13	The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab on A Chip, 2020, 20, 405-413.	6.0	50
14	Boneâ€onâ€aâ€Chip: Microfluidic Technologies and Microphysiologic Models of Bone Tissue. Advanced Functional Materials, 2021, 31, 2006796.	14.9	49
15	3D Printing of Microgel‣oaded Modular Microcages as Instructive Scaffolds for Tissue Engineering. Advanced Materials, 2020, 32, e2001736.	21.0	42
16	The contribution of proteoglycans to the mechanical behavior of mineralized tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 91-104.	3.1	41
17	Engineering Microvascular Networks in LED Light-Cured Cell-Laden Hydrogels. ACS Biomaterials Science and Engineering, 2018, 4, 2563-2570.	5.2	41
18	Bioprinting of Complex Multicellular Organs with Advanced Functionality—Recent Progress and Challenges Ahead. Advanced Materials, 2022, 34, e2101321.	21.0	31

Luiz Bertassoni

#	Article	IF	CITATIONS
19	Micropatterned hydrogels and cell alignment enhance the odontogenic potential of stem cells from apical papilla in-vitro. Dental Materials, 2020, 36, 88-96.	3.5	30
20	A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Materials Science and Engineering C, 2021, 123, 111976.	7.3	27
21	Biomaterial and Biofilm Interactions with the Pulp-Dentin Complex-on-a-Chip. Journal of Dental Research, 2021, 100, 1136-1143.	5.2	26
22	Engineering pericyte-supported microvascular capillaries in cell-laden hydrogels using stem cells from the bone marrow, dental pulp and dental apical papilla. Scientific Reports, 2020, 10, 21579.	3.3	24
23	BoneMA—synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication, 2021, 13, 035031.	7.1	21
24	The influence of osteopontinâ€guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1522-1532.	3.4	19
25	Progress and Challenges in Microengineering the Dental Pulp Vascular Microenvironment. Journal of Endodontics, 2020, 46, S90-S100.	3.1	19
26	Prevascularized hydrogels with mature vascular networks promote the regeneration of criticalâ€size calvarial bone defects in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 219-231.	2.7	18
27	Immunolocalization and distribution of proteoglycans in carious dentine. Australian Dental Journal, 2016, 61, 288-297.	1.5	13
28	Interface between Materials and Oral Biology. Journal of Dental Research, 2021, 100, 1009-1010.	5.2	9
29	Equivalence of human and bovine dentin matrix molecules for dental pulp regeneration: proteomic analysis and biological function. Archives of Oral Biology, 2020, 119, 104888.	1.8	8
30	Bioinspired reconfiguration of 3D printed microfluidic hydrogels <i>via</i> automated manipulation of magnetic inks. Lab on A Chip, 2020, 20, 1713-1719.	6.0	7
31	Oral mucosa equivalents, prevascularization approaches, and potential applications. Connective Tissue Research, 2022, 63, 514-529.	2.3	6
32	Preface: engineering mineralized and load-bearing tissues: progress and challenges. Advances in Experimental Medicine and Biology, 2015, 881, v-vii.	1.6	5
33	Nanoscale mineralization of cell-laden methacrylated gelatin hydrogels using calcium carbonate - calcium citrate core-shell microparticles. Journal of Materials Chemistry B, 2021, 9, 9583-9593.	5.8	4
34	Challenges and Perspectives on the Use of Pericytes in Tissue Engineering. Current Tissue Microenvironment Reports, 0, , .	3.2	0