
## Lifeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489435/publications.pdf Version: 2024-02-01



LIEENC LU

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lithium and sodium storage performance of tin oxyphosphate anode materials. Applied Surface<br>Science, 2022, 579, 152126.                                                                                                               | 3.1  | 4         |
| 2  | Iron Nanoparticles Confined in Periodic Mesoporous Organosilicon as Nanoreactors for Efficient<br>Nitrate Reduction. ACS Applied Nano Materials, 2022, 5, 5149-5157.                                                                     | 2.4  | 9         |
| 3  | Boosting acidic water oxidation performance by constructing arrays-like nanoporous IrxRu1â^xO2 with abundant atomic steps. Nano Research, 2022, 15, 5933-5939.                                                                           | 5.8  | 25        |
| 4  | Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable<br>electrocatalytic/photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310,<br>121318.                                     | 10.8 | 72        |
| 5  | Transition metal tellurides as emerging catalysts for electrochemical water splitting. Current<br>Opinion in Electrochemistry, 2022, 34, 101031.                                                                                         | 2.5  | 12        |
| 6  | lridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2022, 12, 9397-9409.                                                                                                               | 5.5  | 47        |
| 7  | Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. Nanotechnology, 2022, 33, 432004.                                                                                       | 1.3  | 11        |
| 8  | Highly Efficient and Stable Saline Water Electrolysis Enabled by Selfâ€Supported Nickelâ€Iron<br>Phosphosulfide Nanotubes With Heterointerfaces and Underâ€Coordinated Metal Active Sites.<br>Advanced Functional Materials, 2022, 32, . | 7.8  | 60        |
| 9  | Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 283, 119583.                                                              | 10.8 | 78        |
| 10 | Easy preparation of multifunctional ternary PdNiP/C catalysts toward enhanced small organic<br>molecule electro-oxidation and hydrogen evolution reactions. Journal of Energy Chemistry, 2021, 58,<br>256-263.                           | 7.1  | 31        |
| 11 | Rhodium single-atom catalysts with enhanced electrocatalytic hydrogen evolution performance. New<br>Journal of Chemistry, 2021, 45, 5770-5774.                                                                                           | 1.4  | 13        |
| 12 | Multifunctional Noble Metal Phosphide Electrocatalysts for Organic Molecule Electro-Oxidation.<br>ACS Applied Energy Materials, 2021, 4, 1593-1600.                                                                                      | 2.5  | 12        |
| 13 | Atomic-Step Enriched Ruthenium–Iridium Nanocrystals Anchored Homogeneously on MOF-Derived<br>Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis, 2021, 11,<br>3402-3413.                       | 5.5  | 87        |
| 14 | Efficient Bipolar Membrane Water Electrolysis Enabled By Dual-Phase CoP-CoTe2 Nanowires As<br>Bifunctional Electrocatalyst. ECS Meeting Abstracts, 2021, MA2021-01, 2069-2069.                                                           | 0.0  | 0         |
| 15 | Multifunctional Noble Metal Phosphide Electrocatalysts for the Organic Molecule<br>Electro-Oxidation. ECS Meeting Abstracts, 2021, MA2021-01, 2073-2073.                                                                                 | 0.0  | 0         |
| 16 | Ruthenium-Iridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and<br>Stable Oxygen Evolution in Acidic and Neutral Media. ECS Meeting Abstracts, 2021, MA2021-01,<br>2059-2059.                             | 0.0  | 0         |
| 17 | Novel Quasi-Liquid K-Na Alloy as a Dendrite-Free Anode for Potassium Metal Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 2071-2071.                                                                                                 | 0.0  | 0         |
| 18 | Ultrafine Oxygen-Defective Iridium Oxide Nanoclusters for Efficient and Durable Water Oxidation at<br>High Current Densities in Acidic Media. ECS Meeting Abstracts, 2021, MA2021-01, 2060-2060.                                         | 0.0  | 0         |

| #  | Article                                                                                                                                                                                                  | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Atomically Dispersed Ruthenium-Based Multifunctional Electrocatalysts for Efficient Overall Water<br>Electrolysis Assisted By a Bipolar Membrane. ECS Meeting Abstracts, 2021, MA2021-01, 2082-2082.     | 0.0  | 0         |
| 20 | Novel Quasiâ€Liquid Kâ€Na Alloy as a Promising Dendriteâ€Free Anode for Rechargeable Potassium Metal<br>Batteries. Advanced Science, 2021, 8, e2101866.                                                  | 5.6  | 18        |
| 21 | Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction. Journal of<br>Materials Science and Technology, 2021, 78, 170-175.                                             | 5.6  | 23        |
| 22 | Dual-phase CoPâ^'CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar<br>membrane-assisted acid-alkaline water splitting. Chemical Engineering Journal, 2021, 420, 130454.           | 6.6  | 52        |
| 23 | Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries. Materials Today Energy, 2021, 22, 100871.                               | 2.5  | 11        |
| 24 | Exceptional lithium storage performance achieved by iron-based nanostructures upon extended high-rate cycling. Journal of Alloys and Compounds, 2021, 888, 161626.                                       | 2.8  | 4         |
| 25 | Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution. Journal of Materials Chemistry A, 2021, 9, 22248-22253.                 | 5.2  | 35        |
| 26 | Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis. Current<br>Opinion in Chemical Engineering, 2021, 34, 100743.                                                  | 3.8  | 23        |
| 27 | Light-driven oxygen evolution from water oxidation with immobilised TiO2 engineered for high performance. Scientific Reports, 2021, 11, 21306.                                                           | 1.6  | 8         |
| 28 | Bi-metallic cobalt-nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions. Catalysis Today, 2020, 358, 196-202.                                                  | 2.2  | 46        |
| 29 | Proteomic and Metabolic Elucidation of Solar-Powered Biomanufacturing by Bio-Abiotic Hybrid<br>System. CheM, 2020, 6, 234-249.                                                                           | 5.8  | 60        |
| 30 | Bamboo-like nitrogen-doped carbon nanotubes encapsulated with NiFeP nanoparticles and their efficient catalysis in the oxygen evolution reaction. Electrochimica Acta, 2020, 331, 135360.                | 2.6  | 23        |
| 31 | Discovery of Realâ€Space Topological Ferroelectricity in Metallic Transition Metal Phosphides.<br>Advanced Materials, 2020, 32, e2003479.                                                                | 11.1 | 13        |
| 32 | Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at<br>high current densities in acidic media. Journal of Materials Chemistry A, 2020, 8, 24743-24751.    | 5.2  | 45        |
| 33 | Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by <i>In Situ</i> Investigation of<br>a Single Microelectrode. ACS Nano, 2020, 14, 11753-11764.                                       | 7.3  | 10        |
| 34 | Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co <sub>9</sub> S <sub>8</sub><br>in Li‣ Batteries. Advanced Functional Materials, 2020, 30, 2002462.                               | 7.8  | 86        |
| 35 | Bifunctional Porous Cobalt Phosphide Foam for High-Current-Density Alkaline Water Electrolysis<br>with 4000-h Long Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10193-10200.           | 3.2  | 57        |
| 36 | Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar<br>membrane sandwiched by bifunctional cobaltâ€nickel phosphide nanowire electrodes. , 2020, 2, 646-655. |      | 79        |

| #  | Article                                                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Strong Electronic Coupling between Ultrafine Iridium–Ruthenium Nanoclusters and Conductive,<br>Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and<br>Neutral Media. ACS Catalysis, 2020, 10, 3571-3579. | 5.5 | 122       |
| 38 | Strategies for Semiconductor/Electrocatalyst Coupling toward Solarâ€Driven Water Splitting.<br>Advanced Science, 2020, 7, 1902102.                                                                                                                       | 5.6 | 110       |
| 39 | Ultrafine-Grained Porous Ir-Based Catalysts for High-Performance Overall Water Splitting in Acidic<br>Media. ACS Applied Energy Materials, 2020, 3, 3736-3744.                                                                                           | 2.5 | 26        |
| 40 | Mille-Crêpe-like Metal Phosphide Nanocrystals/Carbon Nanotube Film Composites as High-Capacitance<br>Negative Electrodes in Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 4580-4588.                                                | 2.5 | 19        |
| 41 | Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides. ACS Applied Materials & amp; Interfaces, 2020, 12, 21616-21622.                                                                                  | 4.0 | 9         |
| 42 | One-step fabrication of a self-supported Co@CoTe <sub>2</sub> electrocatalyst for efficient and durable oxygen evolution reactions. Inorganic Chemistry Frontiers, 2020, 7, 2523-2532.                                                                   | 3.0 | 37        |
| 43 | Nickel Phosphide Nanomaterials for Hydrogen Evolution Reaction. ECS Meeting Abstracts, 2020,<br>MA2020-02, 1429-1429.                                                                                                                                    | 0.0 | 0         |
| 44 | Synthesis and Characterization of Ordered Cobalt Phosphide Nanowire Arrays As a Potential Catalyst for HER/Oer Reactions ECS Meeting Abstracts, 2020, MA2020-02, 1433-1433.                                                                              | 0.0 | 0         |
| 45 | General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity. , 2019, 1, 265-271.                                                                                        |     | 35        |
| 46 | Inverted Pyramid Textured p-Silicon Covered with Co <sub>2</sub> P as an Efficient and Stable Solar<br>Hydrogen Evolution Photocathode. ACS Energy Letters, 2019, 4, 1755-1762.                                                                          | 8.8 | 35        |
| 47 | High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition<br>Metal Phosphide Nanocrystals. ACS Nano, 2019, 13, 10612-10621.                                                                                        | 7.3 | 214       |
| 48 | The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chemical Communications, 2019, 55, 8744-8763.                                                                                   | 2.2 | 246       |
| 49 | Large-Scale Fabrication of Hollow Pt <sub>3</sub> Al Nanoboxes and Their Electrocatalytic<br>Performance for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>9842-9847.                                              | 3.2 | 14        |
| 50 | Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14097-14107.                                                              | 5.2 | 21        |
| 51 | Polyvinylpyrrolidone-Assisted Hydrothermal Synthesis of CuCoO <sub>2</sub> Nanoplates with<br>Enhanced Oxygen Evolution Reaction Performance. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>1493-1501.                                          | 3.2 | 48        |
| 52 | Conformal and Continuous Deposition of Bifunctional Cobalt Phosphide Layers on p-Silicon<br>Photocathodes for Improved Solar Hydrogen Evolution. ECS Meeting Abstracts, 2019, , .                                                                        | 0.0 | 1         |
| 53 | Compositional and Microstructural Engineering of Transition Metal Phosphides for Improved Electrocatalytic Performance. ECS Meeting Abstracts, 2019, , .                                                                                                 | 0.0 | 0         |
| 54 | Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy<br>lithium ion battery. Energy Storage Materials, 2018, 12, 23-29.                                                                                        | 9.5 | 38        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chemical Science, 2018, 9, 3470-3476.                                                                                                 | 3.7  | 443       |
| 56 | Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy and Environmental Science, 2018, 11, 1819-1827.                                                                             | 15.6 | 350       |
| 57 | Template-Free Synthesis of Hollow Iron Phosphide–Phosphate Composite Nanotubes for Use as Active<br>and Stable Oxygen Evolution Electrocatalysts. ACS Applied Nano Materials, 2018, 1, 617-624.                                                          | 2.4  | 66        |
| 58 | Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Research, 2018, 11, 4823-4835.                                                                      | 5.8  | 28        |
| 59 | Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an<br>investigation on the effect of wire diameter, length and inter-wire spacing. Sustainable Energy and<br>Fuels, 2018, 2, 978-982.                                | 2.5  | 31        |
| 60 | A low temperature hydrothermal synthesis of delafossite CuCoO <sub>2</sub> as an efficient<br>electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorganic Chemistry<br>Frontiers, 2018, 5, 183-188.                               | 3.0  | 58        |
| 61 | Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. Journal of Materials Chemistry A, 2018, 6, 20646-20652.                                               | 5.2  | 95        |
| 62 | Cluster Beam Deposition of Ultrafine Cobalt and Ruthenium Clusters for Efficient and Stable Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 3013-3018.                                                                                 | 2.5  | 29        |
| 63 | Ruthenium Cobalt Phosphide Hybrid Clusters with Exceptional Hydrogen Evolution Performance in<br>Both Acidic and Alkaline Electrolytes. ECS Meeting Abstracts, 2018, , .                                                                                 | 0.0  | 0         |
| 64 | Atomic-layer-deposited ultrafine MoS <sub>2</sub> nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale, 2017, 9, 2711-2717.                                                                                  | 2.8  | 88        |
| 65 | Vapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8, 2952-2958.                                                                                        | 3.7  | 162       |
| 66 | One‣tep Fabrication of Monolithic Electrodes Comprising Co <sub>9</sub> S <sub>8</sub> Particles<br>Supported on Cobalt Foam for Efficient and Durable Oxygen Evolution Reaction. Chemistry - A<br>European Journal, 2017, 23, 8749-8755.                | 1.7  | 64        |
| 67 | Hydrothermal Synthesis of Monolithic Co <sub>3</sub> Se <sub>4</sub> Nanowire Electrodes for<br>Oxygen Evolution and Overall Water Splitting with High Efficiency and Extraordinary Catalytic<br>Stability. Advanced Energy Materials, 2017, 7, 1602579. | 10.2 | 267       |
| 68 | Tunable Pseudocapacitance in 3D TiO <sub>2â^'î´</sub> Nanomembranes Enabling Superior Lithium<br>Storage Performance. ACS Nano, 2017, 11, 821-830.                                                                                                       | 7.3  | 124       |
| 69 | Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Longâ€Term<br>Oxygen Evolution Performance. Chemistry - an Asian Journal, 2017, 12, 543-551.                                                                    | 1.7  | 118       |
| 70 | Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catalysis Today, 2017, 287, 122-129.                                                                          | 2.2  | 105       |
| 71 | Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient<br>and Stable Overall Water Splitting. Advanced Functional Materials, 2016, 26, 4067-4077.                                                              | 7.8  | 591       |
| 72 | Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation. Nanotechnology, 2016, 27, 375401.                                                                                             | 1.3  | 28        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable<br>electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.                           | 4.0 | 190       |
| 74 | Facile synthesis of hierarchical β-LiFePO4and its phase transformation to electrochemically active<br>α-LiFePO4for Li-ion batteries. CrystEngComm, 2016, 18, 7707-7714.                                                    | 1.3 | 6         |
| 75 | Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chemical Communications, 2016, 52, 8711-8714.                                                                      | 2.2 | 168       |
| 76 | Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator<br>membranes for improved lithium-ion battery performance. Composites Part B: Engineering, 2016, 96,<br>94-102.      | 5.9 | 48        |
| 77 | Efficient and durable electrochemical hydrogen evolution using cocoon-like MoS2 with preferentially exposed edges. International Journal of Hydrogen Energy, 2016, 41, 9344-9354.                                          | 3.8 | 74        |
| 78 | Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2016, 4, 5639-5646.                                 | 5.2 | 224       |
| 79 | Self-Supported Three-Dimensional Macroporous Nickel Phosphide Electrodes for Overall Electrochemical Water Splitting. ECS Meeting Abstracts, 2016, , .                                                                     | 0.0 | 0         |
| 80 | Deep dissolution system for high-efficiency wells exploration in carbonate karst reservoir: A case study in the Tazhong area. , 2016, , .                                                                                  |     | 0         |
| 81 | Construction of efficient-sensitive factor for complex carbonate reservoirs and its applications.<br>Journal of Geophysics and Engineering, 2015, 12, 887-896.                                                             | 0.7 | 1         |
| 82 | Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium<br>Ion Batteries. Advanced Functional Materials, 2015, 25, 6701-6709.                                                 | 7.8 | 173       |
| 83 | Oneâ€Step Synthesis of Selfâ€Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient<br>Electrocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2015, 54, 8188-8192.                    | 7.2 | 494       |
| 84 | One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient<br>Electrocatalytic Hydrogen Generation. Angewandte Chemie, 2015, 127, 8306-8310.                                               | 1.6 | 86        |
| 85 | Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chemical Communications, 2015, 51, 10742-10745.                                            | 2.2 | 54        |
| 86 | Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for<br>high-rate supercapacitors. Materials Letters, 2015, 144, 114-118.                                                    | 1.3 | 75        |
| 87 | Direct solvothermal phosphorization of nickel foam to fabricate integrated<br>Ni <sub>2</sub> P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical<br>Communications, 2015, 51, 6738-6741. | 2.2 | 149       |
| 88 | Up-scaling the synthesis of Cu2O submicron particles with controlled morphologies for solar H2 evolution from water. Journal of Colloid and Interface Science, 2015, 456, 219-227.                                         | 5.0 | 20        |
| 89 | Carbonate reservoirs dominated by secondary storage space: Key issues and technical strategy. The<br>Leading Edge, 2015, 34, 90-98.                                                                                        | 0.4 | 9         |
| 90 | Efficient water oxidation using α-Fe2O3 thin films conformally coated on vertically aligned titania nanotube arrays by atomic layer deposition. Materials Letters, 2015, 159, 284-288.                                     | 1.3 | 12        |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Amorphous oxygen-rich molybdenum oxysulfide Decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction. Nano Energy, 2015, 16, 130-142.           | 8.2  | 85        |
| 92  | Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS<br>Catalysis, 2015, 5, 6503-6508.                                                 | 5.5  | 98        |
| 93  | Highâ€Performance Liâ€O <sub>2</sub> Batteries with Trilayered Pd/MnO <i><sub>x</sub></i> /Pd<br>Nanomembranes. Advanced Science, 2015, 2, 1500113.                                 | 5.6  | 55        |
| 94  | Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Advances, 2015, 5, 90428-90436.           | 1.7  | 39        |
| 95  | Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells. Materials Chemistry and Physics, 2015, 149-150, 309-316. | 2.0  | 11        |
| 96  | Silicon nanowires fabricated by porous gold thin film assisted chemical etching and their photoelectrochemical properties. Materials Letters, 2014, 125, 28-31.                     | 1.3  | 14        |
| 97  | Threeâ€Dimensionally "Curved―NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Liâ€ŀon<br>Batteries with Long Cycle Lifetimes. Advanced Energy Materials, 2014, 4, 1300912. | 10.2 | 263       |
| 98  | Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries.<br>Advanced Materials, 2014, 26, 4527-4532.                                     | 11.1 | 141       |
| 99  | Ordered arrays of tilted silicon nanobelts with enhanced solar hydrogen evolution performance.<br>Nanoscale, 2014, 6, 2097.                                                         | 2.8  | 8         |
| 100 | Improved photo-stability of silicon nanobelt arrays by atomic layer deposition for efficient photocatalytic hydrogen evolution. Journal of Power Sources, 2014, 268, 677-682.       | 4.0  | 14        |
| 101 | Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano<br>Energy, 2014, 9, 168-175.                                                    | 8.2  | 268       |
| 102 | Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Scientific Reports, 2014, 4, 7452.                                | 1.6  | 83        |
| 103 | Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chemical Communications, 2013, 49, 8459.                                          | 2.2  | 108       |
| 104 | Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors. Nanoscale, 2013, 5, 11615.                                                | 2.8  | 66        |
| 105 | Direct growth of mesoporous MnO 2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. Journal of Power Sources, 2013, 243, 676-681.           | 4.0  | 138       |
| 106 | Porous Co16S16O96 nanosheets as a new electrode material for use inÂsupercapacitors. Journal of<br>Power Sources, 2013, 239, 24-29.                                                 | 4.0  | 7         |
| 107 | Novel Threeâ€Dimensional Nanoporous Alumina as a Template for Hierarchical TiO <sub>2</sub><br>Nanotube Arrays. Small, 2013, 9, 1025-1029.                                          | 5.2  | 42        |
| 108 | Hierarchical Structures: Novel Threeâ€Đimensional Nanoporous Alumina as a Template for Hierarchical<br>TiO <sub>2</sub> Nanotube Arrays (Small 7/2013). Small, 2013, 9, 1120-1120.  | 5.2  | 1         |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A noise-resistant density inversion algorithm and its application on high efficiency well selection for complex carbonate reservoir. , 2013, , .                                                                 |     | 6         |
| 110 | Studying heterogeneity and anisotropy via numerical and physical modeling. The Leading Edge, 2012, 31, 190-196.                                                                                                  | 0.4 | 14        |
| 111 | Atomic Layer Deposition Assisted Template Approach for Electrochemical Synthesis of Au<br>Crescent-Shaped Half-Nanotubes. ACS Nano, 2011, 5, 788-794.                                                            | 7.3 | 31        |
| 112 | Fabrication and characterization of extended arrays of Ag2S/Ag nanodot resistive switches. Applied Physics Letters, 2011, 98, 243109.                                                                            | 1.5 | 41        |
| 113 | Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by<br>Water at Room Temperature. Nano Letters, 2011, 11, 3649-3655.                                                       | 4.5 | 188       |
| 114 | The fabrication of nanoporous Pt-based multimetallic alloy nanowires and their improved electrochemical durability. Nanotechnology, 2011, 22, 105604.                                                            | 1.3 | 29        |
| 115 | Seismic attributes and integrated prediction of fractured and caved carbonate reservoirs in the Tarim Basin, China. Petroleum Science, 2011, 8, 455-461.                                                         | 2.4 | 12        |
| 116 | Quasi-radial growth of metal tube on si nanowires template. Nanoscale Research Letters, 2011, 6, 165.                                                                                                            | 3.1 | 29        |
| 117 | Lowâ€Platinum ontent Quaternary PtCuCoNi Nanotubes with Markedly Enhanced Oxygen Reduction Activity. Angewandte Chemie - International Edition, 2011, 50, 2729-2733.                                             | 7.2 | 110       |
| 118 | Regulated Oxidation of Nickel in Multisegmented Nickel–Platinum Nanowires: An Entry to Wavy<br>Nanopeapods. Angewandte Chemie - International Edition, 2011, 50, 10855-10858.                                    | 7.2 | 21        |
| 119 | Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochimica Acta, 2011, 56, 4972-4979.                                                                   | 2.6 | 105       |
| 120 | Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays.<br>Journal of Applied Physics, 2011, 110, .                                                                  | 1.1 | 13        |
| 121 | A novel synthesis of ultrathin CoPt3 nanowires by dealloying larger diameter Co99Pt1 nanowires and subsequent stress-induced crack propagation. Electrochemistry Communications, 2010, 12, 835-838.              | 2.3 | 8         |
| 122 | Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.<br>Nanotechnology, 2010, 21, 055603.                                                                            | 1.3 | 14        |
| 123 | Capillary Condensation and Evaporation in Alumina Nanopores with Controlled Modulations.<br>Langmuir, 2010, 26, 11894-11898.                                                                                     | 1.6 | 57        |
| 124 | Metal-assisted electrochemical etching of silicon. Nanotechnology, 2010, 21, 465301.                                                                                                                             | 1.3 | 96        |
| 125 | Continuous Fabrication of Free-Standing TiO <sub>2</sub> Nanotube Array Membranes with<br>Controllable Morphology for Depositing Interdigitated Heterojunctions. Chemistry of Materials,<br>2010, 22, 6656-6664. | 3.2 | 109       |
| 126 | Microstructure and Properties of Well-Ordered Multiferroic<br>Pb(Zr,Ti)O <sub>3</sub> /CoFe <sub>2</sub> O <sub>4</sub> Nanocomposites. ACS Nano, 2010, 4, 1099-1107.                                            | 7.3 | 86        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. Journal of Materials Chemistry, 2010, 20, 5621.                                       | 6.7 | 79        |
| 128 | From Co/Pt multilayered nanowires to Co–Pt alloy nanowires: structural and magnetic evolutions with annealing temperatures. Journal Physics D: Applied Physics, 2009, 42, 205002.                                   | 1.3 | 13        |
| 129 | Highâ€Density Periodically Ordered Magnetic Cobalt Ferrite Nanodot Arrays by Templateâ€Assisted Pulsed<br>Laser Deposition. Advanced Functional Materials, 2009, 19, 3450-3455.                                     | 7.8 | 74        |
| 130 | Nanoporous Ptâ^'Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties.<br>Nano Letters, 2009, 9, 4352-4358.                                                                            | 4.5 | 377       |
| 131 | Vortex Polarization States in Nanoscale Ferroelectric Arrays. Nano Letters, 2009, 9, 1127-1131.                                                                                                                     | 4.5 | 197       |
| 132 | An integrated study on fractured and cavernous carbonate reservoir prediction — multiâ€attribute<br>optimization discriminant analysis for Tarim Basin. , 2009, , .                                                 |     | 0         |
| 133 | Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube<br>arrays. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149,<br>41-46.  | 1.7 | 44        |
| 134 | Tailorâ€Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal Nanoparticle Chains.<br>Angewandte Chemie - International Edition, 2008, 47, 7004-7008.                                                 | 7.2 | 61        |
| 135 | Inside Cover: Tailor-Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal<br>Nanoparticle Chains (Angew. Chem. Int. Ed. 37/2008). Angewandte Chemie - International Edition, 2008,<br>47, 6926-6926. | 7.2 | 0         |
| 136 | Innentitelbild: Tailor-Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal<br>Nanoparticle Chains (Angew. Chem. 37/2008). Angewandte Chemie, 2008, 120, 7032-7032.                                  | 1.6 | 0         |
| 137 | Microstructure and temperature-dependent magnetic properties of Co/Pt multilayered nanowires.<br>Chemical Physics Letters, 2008, 466, 165-169.                                                                      | 1.2 | 26        |
| 138 | Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted<br>Chemical Etching. Nano Letters, 2008, 8, 3046-3051.                                                                | 4.5 | 317       |
| 139 | Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach.<br>Nanotechnology, 2008, 19, 495706.                                                                                   | 1.3 | 18        |
| 140 | Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane. Nanotechnology, 2008, 19, 335604.                                                                               | 1.3 | 71        |
| 141 | Highly Efficient Direct Electrodeposition of Coâ^'Cu Alloy Nanotubes in an Anodic Alumina Template.<br>Journal of Physical Chemistry C, 2008, 112, 2256-2261.                                                       | 1.5 | 52        |
| 142 | General Assembly Method for Linear Metal Nanoparticle Chains Embedded in Nanotubes. Nano Letters,<br>2008, 8, 3221-3225.                                                                                            | 4.5 | 60        |
| 143 | Growth of ultrafine ZnS nanowires. Nanotechnology, 2007, 18, 145607.                                                                                                                                                | 1.3 | 18        |
| 144 | Large-scale synthesis and optical behaviors of ZnO tetrapods. Applied Physics Letters, 2007, 90, 153116.                                                                                                            | 1.5 | 44        |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Secondary growth of small ZnO tripodlike arms on the end of nanowires. Applied Physics Letters, 2007, 91, 013106.                                                               | 1.5  | 5         |
| 146 | A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays. Nanotechnology, 2007, 18, 405303.                                                               | 1.3  | 42        |
| 147 | Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films.<br>Nano Letters, 2007, 7, 2307-2311.                                           | 4.5  | 334       |
| 148 | Batchwise Growth of Silica Cone Patterns via Self-Assembly of Aligned Nanowires. Small, 2007, 3, 444-450.                                                                       | 5.2  | 10        |
| 149 | Patterned anodic aluminium oxide fabricated with a Ta mask. Nanotechnology, 2006, 17, 35-39.                                                                                    | 1.3  | 16        |
| 150 | Growth Mechanism, Photoluminescence, and Field-Emission Properties of ZnO Nanoneedle Arrays.<br>Journal of Physical Chemistry B, 2006, 110, 8566-8569.                          | 1.2  | 83        |
| 151 | Structural, Magnetic, and Magnetoresistive Properties of Electrodeposited Ni5Zn21Alloy Nanowires.<br>Journal of Physical Chemistry B, 2006, 110, 20158-20165.                   | 1.2  | 9         |
| 152 | Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers. Nano<br>Letters, 2006, 6, 2375-2378.                                                  | 4.5  | 130       |
| 153 | Temperature Dependence of the Raman Spectra of Individual Carbon Nanotubes. Journal of Physical<br>Chemistry B, 2006, 110, 1206-1209.                                           | 1.2  | 53        |
| 154 | The growth of carbon nanostructures in the channels of aligned carbon nanotubes. Carbon, 2006, 44, 1310-1313.                                                                   | 5.4  | 6         |
| 155 | Human fibrinogen adsorption onto single-walled carbon nanotube films. Colloids and Surfaces B:<br>Biointerfaces, 2006, 49, 66-70.                                               | 2.5  | 24        |
| 156 | Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF)<br>reduction. Journal of Crystal Growth, 2006, 289, 376-380.                          | 0.7  | 113       |
| 157 | Structure and electrical characteristics of Nb-doped SrTiO3 substrates. Science Bulletin, 2006, 51, 2035-2037.                                                                  | 1.7  | 11        |
| 158 | Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical<br>Vapor Deposition. Advanced Materials, 2006, 18, 1817-1821.                     | 11.1 | 57        |
| 159 | Electrochemical fabrication and structure of NixZn1â^'xalloy nanowires. Nanotechnology, 2006, 17, 19-24.                                                                        | 1.3  | 18        |
| 160 | Efficiently producing single-walled carbon nanotube rings and investigation of their field emission properties. Nanotechnology, 2006, 17, 2355-2361.                            | 1.3  | 16        |
| 161 | Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon<br>nanotubes array. Journal Physics D: Applied Physics, 2006, 39, 3939-3944. | 1.3  | 10        |
| 162 | Conformal conversion from helical hexagonal InN microtubes to In2O3 counterparts. Applied Physics<br>Letters, 2006, 89, 093112.                                                 | 1.5  | 7         |

| #   | Article                                                                                                                                                                                                                               | IF               | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 163 | The influence of hydrogen on the growth of gallium catalyzed silicon oxide nanowires. Journal of<br>Physics and Chemistry of Solids, 2005, 66, 701-705.                                                                               | 1.9              | 7         |
| 164 | Silver nanowires with five-fold symmetric cross-section. Journal of Crystal Growth, 2005, 276, 606-612.                                                                                                                               | 0.7              | 107       |
| 165 | Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed<br>on the Ag-coated anodic aluminum oxide (AAO) surface. Physica E: Low-Dimensional Systems and<br>Nanostructures, 2005, 27, 469-473. | 1.3              | 2         |
| 166 | Surface-enhanced Raman scattering from the individual metallic single-walled carbon nanotubes.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 360-364.                                                           | 1.3              | 5         |
| 167 | Bulk-quantity synthesis of single-crystalline indium nitride nanobelts. Chemical Physics Letters, 2005, 411, 361-365.                                                                                                                 | 1.2              | 11        |
| 168 | Synthesis of LongIndium Nitride Nanowires with Uniform Diameters in Large Quantities. Small, 2005, 1, 1004-1009.                                                                                                                      | 5.2              | 47        |
| 169 | Three-dimensional micro- and nanometre composite aluminium patterns. Chinese Physics B, 2005, 14, 1471-1476.                                                                                                                          | 1.3              | 3         |
| 170 | Growth of ZnO hexagonal nanoprisms. Nanotechnology, 2005, 16, 2665-2669.                                                                                                                                                              | 1.3              | 50        |
| 171 | Template-free synthesis of helical hexagonal microtubes of indium nitride. Applied Physics Letters, 2005, 87, 063109.                                                                                                                 | 1.5              | 32        |
| 172 | Effects of donor concentration on the electrical properties of Nb-doped BaTiO3 thin films. Journal of Applied Physics, 2005, 97, 054102.                                                                                              | 1.1              | 36        |
| 173 | Anodizing Behavior of Aluminum Foil Patterned with SiO[sub 2] Mask. Journal of the Electrochemical Society, 2005, 152, B411.                                                                                                          | 1.3              | 7         |
| 174 | Temperature effect on carrier transport characteristics in SrTiO3â^`î´/Si p-n heterojunction. Applied<br>Physics Letters, 2005, 86, 123502.                                                                                           | 1.5              | 31        |
| 175 | Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons. Journal of Physical Chemistry B, 2005, 109, 18352-18355.                                                                                                    | 1.2              | 53        |
| 176 | Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. Journal Physics D: Applied Physics, 2005, 38, 1061-1067.                                                                          | 1.3              | 147       |
| 177 | Structural phase transitions of BaNbxTi1â^'xO3(0.0⩽x⩽0.5) thin films. Journal of Applied Physics, 2004, 9<br>3404-3407.                                                                                                               | 6 <sub>1.1</sub> | 10        |
| 178 | Synthesis, optical, and magnetic properties of Zn1â^'xMnxS nanowires grown by thermal evaporation.<br>Journal of Crystal Growth, 2004, 271, 403-408.                                                                                  | 0.7              | 49        |
| 179 | Multidimensional magnesium oxide nanostructures with cone-shaped branching. Solid State Communications, 2004, 131, 485-488.                                                                                                           | 0.9              | 11        |
| 180 | Synthesis and characterization of a large amount of branched Ni2Si nanowires. Applied Physics A:<br>Materials Science and Processing, 2004, 79, 1853-1856.                                                                            | 1.1              | 33        |

| #   | Article                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Direct Synthesis of a Macroscale Single-Walled Carbon Nanotube Non-Woven Material. Advanced<br>Materials, 2004, 16, 1529-1534.                                 | 11.1 | 131       |
| 182 | Growth of SnO 2 nanowires with uniform branched structures. Solid State Communications, 2004, 130, 89-94.                                                      | 0.9  | 148       |
| 183 | Synthesis, structure, and photoluminescence of Zn2SnO4 single-crystal nanobelts and nanorings.<br>Solid State Communications, 2004, 131, 435-440.              | 0.9  | 102       |
| 184 | Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures. Journal of Crystal<br>Growth, 2004, 267, 177-183.                                | 0.7  | 90        |
| 185 | The intrinsic temperature effect of Raman spectra of double-walled carbon nanotubes. Chemical Physics Letters, 2004, 396, 372-376.                             | 1.2  | 23        |
| 186 | Structural properties and spin–phonon coupling effect of La1â^'xTexMnO3 thin films. Applied Physics<br>Letters, 2004, 85, 3172-3174.                           | 1.5  | 18        |
| 187 | Random Networks of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 10751-10753.                                                    | 1.2  | 30        |
| 188 | Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires.<br>Journal of Physical Chemistry B, 2004, 108, 12877-12881. | 1.2  | 248       |
| 189 | Synthesis, characterization and self-assembly of silver nanowires. Chemical Physics Letters, 2003, 380, 146-149.                                               | 1.2  | 95        |
| 190 | Producing cleaner double-walled carbon nanotubes in a floating catalyst system. Carbon, 2003, 41, 2607-2611.                                                   | 5.4  | 27        |
| 191 | Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS powders.<br>Chemical Physics Letters, 2003, 371, 337-341.                 | 1.2  | 47        |
| 192 | A simple large-scale synthesis of coaxial nanocables: silicon carbide sheathed with silicon oxide.<br>Chemical Physics Letters, 2003, 375, 269-272.            | 1.2  | 22        |
| 193 | H2-assisted control growth of Si nanowires. Journal of Crystal Growth, 2003, 257, 69-74.                                                                       | 0.7  | 6         |
| 194 | Formation of ZnS nanostructures by a simple way of thermal evaporation. Journal of Crystal Growth, 2003, 258, 225-231.                                         | 0.7  | 27        |
| 195 | Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Applied<br>Physics Letters, 2003, 82, 3098-3100.                          | 1.5  | 69        |
| 196 | Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method. Journal of Applied Physics, 2003, 94, 5715-5719.       | 1.1  | 14        |
| 197 | Characteristics of LaAlO3/Si(100) deposited under various oxygen pressures. Journal of Applied Physics, 2003, 93, 533-536.                                     | 1.1  | 70        |
| 198 | Optical properties ofp-type In-doped SrTiO3 thin films. Journal of Applied Physics, 2003, 94, 4558-4562.                                                       | 1.1  | 30        |