
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489333/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now?. Animal Feed Science and Technology, 2021, 274, 114836.	1.1	14
2	Contrasted central effects of n-3 versus n-6 diets on brain functions in diet-induced obesity in minipigs. Nutritional Neuroscience, 2021, , 1-13.	1.5	0
3	Intestinal alkaline phosphatase in the gastrointestinal tract of fish: biology, ontogeny, and environmental and nutritional modulation. Reviews in Aquaculture, 2020, 12, 555-581.	4.6	55
4	Editorial on writing reviews for the <i>British Journal of Nutrition</i> . British Journal of Nutrition, 2020, 123, 961-963.	1.2	0
5	Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutrition Reviews, 2019, 77, 710-724.	2.6	68
6	Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review. Fish and Shellfish Immunology, 2019, 89, 179-186.	1.6	63
7	Case studies on genetically modified organisms (GMOs): Potential risk scenarios and associated health indicators. Food and Chemical Toxicology, 2018, 117, 36-65.	1.8	37
8	Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB Journal, 2018, 32, 2160-2171.	0.2	58
9	Dairy products and the French paradox: Could alkaline phosphatases play a role?. Medical Hypotheses, 2016, 92, 7-11.	0.8	13
10	Critical review evaluating the pig as a model for human nutritional physiology. Nutrition Research Reviews, 2016, 29, 60-90.	2.1	204
11	Obesogenic diets have deleterious effects on fat deposits irrespective of the nature of dietary carbohydrates in a Yucatan minipig model. Nutrition Research, 2016, 36, 947-954.	1.3	4
12	Microbiota-host interplay at the gut epithelial level, health and nutrition. Journal of Animal Science and Biotechnology, 2016, 7, 66.	2.1	55
13	Nonalcoholic fatty liver disease: Roles of the gut and the liver and metabolic modulation by some dietary factors and especially longâ€chain nâ€3 PUFA. Molecular Nutrition and Food Research, 2016, 60, 147-159.	1.5	31
14	Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutrition Reviews, 2016, 74, 181-197.	2.6	46
15	Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional De Agronomia Medellin, 2016, 69, 7911-7918.	0.2	4
16	Intestinal Alkaline Phosphatase in Stool: A Novel Biomarker for Metabolic Diseases. EBioMedicine, 2015, 2, 1866.	2.7	9
17	The Olfactory Receptor OR51E1 Is Present along the Gastrointestinal Tract of Pigs, Co-Localizes with Enteroendocrine Cells and Is Modulated by Intestinal Microbiota. PLoS ONE, 2015, 10, e0129501.	1.1	52
18	Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring. PLoS ONE, 2015, 10, e0118092.	1.1	33

#	Article	IF	CITATIONS
19	Dietary sugars: their detection by the gut–brain axis and their peripheral and central effects in health and diseases. European Journal of Nutrition, 2015, 54, 1-24.	1.8	50
20	Phosphatase alcaline intestinaleÂ: une enzyme très protectrice par ses propriétés anti-inflammatoires puissantes. Cahiers De Nutrition Et De Dietetique, 2014, 49, 81-87.	0.2	2
21	Intestinal alkaline phosphatase: novel functions and protective effects. Nutrition Reviews, 2014, 72, 82-94.	2.6	258
22	Luminal ATP: the missing link between intestinal alkaline phosphatase, the gut microbiota, and inflammation?. American Journal of Physiology - Renal Physiology, 2014, 306, G824-G825.	1.6	24
23	Effects of chronic intake of starch-, glucose- and fructose-containing diets on eating behaviour in adult minipigs. Applied Animal Behaviour Science, 2014, 157, 61-71.	0.8	11
24	Early Changes in Microbial Colonization Selectively Modulate Intestinal Enzymes, but Not Inducible Heat Shock Proteins in Young Adult Swine. PLoS ONE, 2014, 9, e87967.	1.1	48
25	Tu1753 Central Functions Altered by Chronic High-Lipids Diets Enriched With Omega-3, Omega-6 or Saturated Fat. Gastroenterology, 2013, 144, S-837.	0.6	2
26	Effets à long terme de la nutrition et de l'environnement précoces sur la physiologie intestinale. Cahiers De Nutrition Et De Dietetique, 2013, 48, 191-200.	0.2	0
27	Age-Related Expression of the Polymeric Immunoglobulin Receptor (pIgR) in the Gastric Mucosa of Young Pigs. PLoS ONE, 2013, 8, e81473.	1.1	13
28	Perinatal undernutrition alters intestinal alkaline phosphatase and its main transcription factors KLF4 and Cdx1 in adult offspring fed a high-fat diet. Journal of Nutritional Biochemistry, 2012, 23, 1490-1497.	1.9	26
29	The Level of Protein in Milk Formula Modifies Ileal Sensitivity to LPS Later in Life in a Piglet Model. PLoS ONE, 2011, 6, e19594.	1.1	46
30	Fasting and refeeding modulate the expression of stress proteins along the gastrointestinal tract of weaned pigs. Journal of Animal Physiology and Animal Nutrition, 2011, 95, 478-488.	1.0	26
31	A melon pulp concentrate rich in superoxide dismutase reduces stress proteins along the gastrointestinal tract of pigs. Nutrition, 2011, 27, 358-363.	1.1	18
32	Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutrition Reviews, 2010, 68, 323-332.	2.6	282
33	Phaseolin from <i>Phaseolus vulgaris</i> bean modulates gut mucin flow and gene expression in rats. British Journal of Nutrition, 2010, 104, 1740-1747.	1.2	5
34	Consumption of fumonisin B1 for 9 days induces stress proteins along the gastrointestinal tract of pigs. Toxicon, 2010, 55, 244-249.	0.8	20
35	Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Research International, 2010, 43, 443-449.	2.9	67
36	Linseed Oil in the Maternal Diet during Gestation and Lactation Modifies Fatty Acid Composition, Mucosal Architecture, and Mast Cell Regulation of the Ileal Barrier in Piglets. Journal of Nutrition, 2009, 139, 1110-1117.	1.3	44

#	Article	IF	CITATIONS
37	Intestinal Physiology and Peptidase Activity in Male Pigs Are Modulated by Consumption of Corn Culture Extracts Containing Fumonisins. Journal of Nutrition, 2009, 139, 1303-1307.	1.3	24
38	Intestinal barrier function is modulated by short-term exposure to fumonisin B1 in Ussing chambers. Veterinary Research Communications, 2009, 33, 1039-1043.	0.6	21
39	Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats. British Journal of Nutrition, 2009, 101, 1324.	1.2	9
40	Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 2009, 102, 1285-1296.	1.2	89
41	In vitro and in vivo protein hydrolysis of beans (Phaseolus vulgaris) genetically modified to express different phaseolin types. Food Chemistry, 2008, 106, 1225-1233.	4.2	24
42	Effects of whole wheat feeding on the development of the digestive tract of broiler chickens. Animal Feed Science and Technology, 2008, 142, 144-162.	1.1	92
43	Susceptibility of Phaseolin to in Vitro Proteolysis Is Highly Variable across Common Bean Varieties (<i>Phaseolus vulgaris</i>). Journal of Agricultural and Food Chemistry, 2008, 56, 2183-2191.	2.4	48
44	Phaseolin type and heat treatment influence the biochemistry of protein digestion in the rat intestine. British Journal of Nutrition, 2008, 99, 531-539.	1.2	18
45	Supplemental Sodium Butyrate Stimulates Different Gastric Cells in Weaned Pigs3. Journal of Nutrition, 2008, 138, 1426-1431.	1.3	72
46	Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. British Journal of Nutrition, 2007, 97, 45-57.	1.2	198
47	Weaning — A challenge to gut physiologists. Livestock Science, 2007, 108, 82-93.	0.6	240
48	Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 2007, 66, 260-268.	0.4	429
49	Weaned piglets display low gastrointestinal digestion of pea (Pisum sativum L.) lectin and pea albumin 21. Journal of Animal Science, 2007, 85, 2972-2981.	0.2	31
50	A protein-free diet alters small intestinal architecture and digestive enzyme activities in rats. Reproduction, Nutrition, Development, 2006, 46, 49-56.	1.9	16
51	Influence of the Phaseolus vulgaris phaseolin level of incorporation, type and thermal treatment on gut characteristics in rats. British Journal of Nutrition, 2006, 95, 116-123.	1.2	27
52	High-viscosity carboxymethylcellulose reduces carbachol-stimulated intestinal chloride secretion in weaned piglets fed a diet based on skimmed milk powder and maltodextrin. British Journal of Nutrition, 2006, 95, 488-495.	1.2	8
53	The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets1. Journal of Animal Science, 2006, 84, 3337-3345.	0.2	136
54	Increasing Digesta Viscosity Using Carboxymethylcellulose in Weaned Piglets Stimulates Ileal Goblet Cell Numbers and Maturation. Journal of Nutrition, 2005, 135, 86-91.	1.3	89

#	Article	IF	CITATIONS
55	An early stimulation of solid feed intake slightly influences the morphological gut maturation in the rabbit. Reproduction, Nutrition, Development, 2005, 45, 109-122.	1.9	31
56	Gut function and dysfunction in young pigs: physiology. Animal Research, 2004, 53, 301-316.	0.6	250
57	Effect of diet composition on postweaning colibacillosis in piglets123. Journal of Animal Science, 2004, 82, 2364-2374.	0.2	87
58	Estimation of ileal output of gastro-intestinal glycoprotein in weaned piglets using three different methods. Reproduction, Nutrition, Development, 2004, 44, 419-435.	1.9	15
59	Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. Journal of Nutrition, 2004, 134, 641-647.	1.3	478
60	Weaning Induces Both Transient and Long-Lasting Modifications of Absorptive, Secretory, and Barrier Properties of Piglet Intestine. Journal of Nutrition, 2004, 134, 2256-2262.	1.3	290
61	Immunodetection of legume proteins resistant to small intestinal digestion in weaned piglets. Journal of the Science of Food and Agriculture, 2003, 83, 1571-1580.	1.7	22
62	Influence of Dietary Protein Level and Source on the Course of Protein Digestion Along the Small Intestine of the Veal Calf. Journal of Dairy Science, 2003, 86, 934-943.	1.4	38
63	Soybean impairs Na+-dependent glucose absorption and Cl-secretion in porcine small intestine. Reproduction, Nutrition, Development, 2003, 43, 409-418.	1.9	4
64	Diet-Related Adaptation of the Small Intestine at Weaning in Pigs Is Functional Rather Than Structural. Journal of Pediatric Gastroenterology and Nutrition, 2002, 34, 180-187.	0.9	44
65	Legume Proteins of the Vicilin Family are More Immunogenic Than Those of the Legumin Family in Weaned Piglets. Food and Agricultural Immunology, 2002, 14, 51-63.	0.7	21
66	Component digestibility of lupin (Lupinus angustifolius) and pea (Pisum sativum) seeds and effects on the small intestine and body organs in anastomosed and intact growing pigs. Animal Feed Science and Technology, 2002, 98, 187-201.	1.1	10
67	Legume Grains Enhance Ileal Losses of Specific Endogenous Serine-Protease Proteins in Weaned Pigs. Journal of Nutrition, 2002, 132, 1913-1920.	1.3	27
68	Weaning Affects the Expression of Heat Shock Proteins in Different Regions of the Gastrointestinal Tract of Piglets. Journal of Nutrition, 2002, 132, 2551-2561.	1.3	36
69	Xylanase and β-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet1. Journal of Animal Science, 2002, 80, 2773-2779.	0.2	138
70	Comparative effects of different legume protein sources in weaned piglets: nutrient digestibility, intestinal morphology and digestive enzymes. Livestock Science, 2002, 74, 191-202.	1.2	57
71	Enzymes of the small intestine of the calf: effect of dietary protein source on the activities of some enzymes in the small intestinal mucosa and digesta. Journal of the Science of Food and Agriculture, 2002, 82, 1772-1779.	1.7	7
72	Nutrient digestibility of chickpea (Cicer arietinum L.) seeds and effects on the small intestine of weaned piglets. Animal Feed Science and Technology, 2001, 91, 197-212.	1.1	29

JEAN-PAUL LALLÃ"S

#	Article	IF	CITATIONS
73	Intestinal digestion of dietary and endogenous proteins along the small intestine of calves fed soybean or potato Journal of Animal Science, 2001, 79, 2719.	0.2	26
74	Digestion of colostrum by the preruminant calf: digestibility and origin of undigested protein fractions in ileal digesta. Dairy Science and Technology, 2001, 81, 443-454.	0.9	2
75	Quantitative and qualitative changes in endogenous nitrogen components along the small intestine of the calf. Journal of the Science of Food and Agriculture, 2000, 80, 2123-2134.	1.7	11
76	Calf Intestinal Mucin: Isolation, Partial Characterization, and Measurement in Ileal Digesta with an Enzyme-Linked Immunosorbent Assay. Journal of Dairy Science, 2000, 83, 507-517.	1.4	53
77	Influence of Dietary Protein Level and Origin on the Flow of Mucin Along the Small Intestine of the Preruminant Calf. Journal of Dairy Science, 2000, 83, 2820-2828.	1.4	37
78	Morphology and enzyme activities of the small intestine are modulated by dietary protein source in the preruminant calf. Reproduction, Nutrition, Development, 1999, 39, 455-466.	1.9	26
79	Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss Journal of Animal Science, 1999, 77, 2990.	0.2	193
80	Contribution to the study of gut hypersensitivity reactions to soybean proteins in preruminant calves and early-weaned piglets. Livestock Science, 1999, 60, 209-218.	1.2	31
81	Immunochemical Studies on Gastric and Intestinal Digestion of Soybean Glycinin and β-Conglycinin in Vivo. Journal of Agricultural and Food Chemistry, 1999, 47, 2797-2806.	2.4	48
82	Nutritional value of the proteins of soybeans roasted at a small-scale unit level in Africa as assessed using growing rats. Reproduction, Nutrition, Development, 1999, 39, 201-212.	1.9	11
83	Roasted fullfat soybean as an ingredient of milk replacers for goat kids. Small Ruminant Research, 1998, 28, 53-59.	0.6	8
84	Investigation of the Relationship betweenin VitroELISA Measures of Immunoreactive Soy Globulins andin VivoEffects of Soy Products. Journal of Agricultural and Food Chemistry, 1996, 44, 2155-2161.	2.4	12
85	Feeding heated soyabean flour increases the density of B and T lymphocytes in the small intestine of calves. Veterinary Immunology and Immunopathology, 1996, 52, 105-115.	0.5	15
86	Identification of soyabean allergens and immune mechanisms of dietary sensitivities in preruminant calves. Research in Veterinary Science, 1996, 60, 111-116.	0.9	36
87	Analytical Criteria for Predicting Apparent Digestibility of Soybean Protein in Preruminant Calves. Journal of Dairy Science, 1996, 79, 475-482.	1.4	22
88	Lead Review Article Biochemical Features of Grain Legume Allergens in Humans and Animals. Nutrition Reviews, 1996, 54, 101-107.	2.6	30
89	Systemic and local gut-specific antibody responses in preruminant calves sensitive to soya. Research in Veterinary Science, 1995, 59, 56-60.	0.9	12
90	Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture, 1995, 133, 257-274.	1.7	639

#	Article	IF	CITATIONS
91	lgM, IgA, IgG1 and IgG2 specific responses in blood and gut secretion of calves fed soyabean products. Veterinary Immunology and Immunopathology, 1995, 47, 57-67.	0.5	14
92	B and T lymphocytes are enhanced in the gut of piglets fed heat-treated soyabean proteins. Veterinary Immunology and Immunopathology, 1995, 47, 69-79.	0.5	30
93	Hydrolyzed Soy Protein Isolate Sustains High Nutritional Performance in Veal Calves. Journal of Dairy Science, 1995, 78, 194-204.	1.4	47
94	Local and systemic immune responses to soybean protein ingestion in early-weaned pigs. Journal of Animal Science, 1994, 72, 2090-2098.	0.2	67
95	Replacement of skim milk with soya bean protein concentrates and whey in milk replacers for veal calves. Animal Feed Science and Technology, 1994, 50, 101-112.	1.1	11
96	Nutritional and antinutritional aspects of soyabean and field pea proteins used in veal calf production: a review. Livestock Science, 1993, 34, 181-202.	1.2	65
97	Mean retention time of dietary residues within the gastrointestinal tract of the young ruminant: a comparison of non-compartmental (algebraic) and compartmental (modelling) estimation methods. Animal Feed Science and Technology, 1991, 35, 139-159.	1.1	12
98	Changes in ruminal and intestinal digestion during and after weaning in dairy calves fed concentrate diets containing pea or soya bean meal. 1. Digestion of organic matter and nitrogen. Livestock Science, 1990, 24, 129-142.	1.2	31