Pralay Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489329/publications.pdf Version: 2024-02-01

<u>Ρρλιάν Πλο</u>

#	Article	IF	CITATIONS
1	Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7693-7701.	3.5	40
2	Supported Palladium Catalyzed Carbonylative Coupling Reactions using Carbon Monoxide as C1 Source. Chemical Record, 2022, 22, .	5.8	13
3	Free Amine, Hydroxyl and Sulfhydryl Directed Câ^'H Functionalization and Annulation: Application to Heterocycle Synthesis. Chemical Record, 2022, 22, .	5.8	8
4	ldentification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. Journal of Molecular Liquids, 2022, 348, 118015.	4.9	11
5	Evaluation of plant-derived semi-synthetic molecules against BRD3-BD2 protein: a computational strategy to combat breast cancer. Molecular Systems Design and Engineering, 2022, 7, 381-391.	3.4	12
6	ldentification of 11β-HSD1 inhibitors through enhanced sampling methods. Chemical Communications, 2022, 58, 5005-5008.	4.1	48
7	Application of Cyclohexaneâ€1,3â€diones in the Synthesis of Sixâ€Membered Nitrogenâ€Containing Heterocycles. ChemistrySelect, 2022, 7, .	1.5	2
8	ldentification of acridinedione scaffolds as potential inhibitor of DENVâ€⊋ C protein: An in silico strategy to combat dengue. Journal of Cellular Biochemistry, 2022, 123, 935-946.	2.6	57
9	Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catalysis, 2022, 12, 6672-6701.	11.2	17
10	ldentification of naturally originated molecules as Î ³ -aminobutyric acid receptor antagonist. Journal of Biomolecular Structure and Dynamics, 2021, 39, 911-922.	3.5	33
11	Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 2021, 113, 707-715.	2.9	58
12	Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 2021, 128, 104117.	7.0	90
13	Application of cyclohexane-1,3-diones for six-membered oxygen-containing heterocycles synthesis. Bioorganic Chemistry, 2021, 107, 104559.	4.1	14
14	New ecdysone receptor agonists: a computational approach for rational discovery of insecticides for crop protection. Molecular Systems Design and Engineering, 2021, 6, 936-945.	3.4	7
15	Advances in Transitionâ€Metal Catalyzed Carbonylative Suzukiâ€Miyaura Coupling Reaction: An Update. Advanced Synthesis and Catalysis, 2021, 363, 1597-1624.	4.3	51
16	Pd/C Catalyzed Cascade Synthesis of 2â€Arylquinazolinones from 2â€lodoacetanilides Employing Ammonia and CO Precursors. ChemCatChem, 2021, 13, 2459-2464.	3.7	7
17	Metal Catalyst and Hydrogen Gas-Free Selective Reduction of Biomass-Derived Substituted Furfuraldehyde to Alkyl Furan as a Key Biofuel Additive. Organic Process Research and Development, 2021, 25, 892-899.	2.7	9
18	Lignocellulosic biomass and carbohydrates as feed-stock for scalable production of 5-hydroxymethylfurfural. Cellulose, 2021, 28, 3967-3980.	4.9	19

#	Article	IF	CITATIONS
19	Rhodium catalyzed 2â€alkylâ€benzimidazoles synthesis from benzeneâ€1,2â€diamines and tertiary alkylamines a alkylating agents. Applied Organometallic Chemistry, 2021, 35, e6278.	^S 3.5	3
20	Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. Pesticide Biochemistry and Physiology, 2021, 175, 104858.	3.6	15
21	Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorganic Chemistry, 2021, 112, 104860.	4.1	9
22	Synthetic approaches for cyclohexane-1,3-diones: A versatile precursor for bioactive molecules. Synthetic Communications, 2021, 51, 2553-2573.	2.1	5
23	Pdâ€Catalysed Decarbonylation Free Approach to Carbonylative Esterification of 5â€HMF to Its Aryl Esters Synthesis Using Aryl Halides and Oxalic Acid as C ₁ Source. Chemistry - A European Journal, 2021, 27, 12971-12975.	3.3	13
24	A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in Biology and Medicine, 2021, 135, 104555.	7.0	60
25	Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution. Journal of Industrial and Engineering Chemistry, 2021, 104, 286-294.	5.8	17
26	Polystyrene stabilized iridium nanoparticles catalyzed chemo- and regio-selective semi-hydrogenation of nitroarenes to N-arylhydroxylamines. Molecular Catalysis, 2021, 514, 111836.	2.0	4
27	Supported-Pd catalyzed tandem approach for N-arylbenzamides synthesis. Molecular Catalysis, 2021, 516, 111948.	2.0	6
28	lodine(iii) promoted ring-rearrangement reaction of 1-arylamino-2-oxocyclopentane-1-carbonitriles to synthesize N-aryl-δ-valerolactams. Organic and Biomolecular Chemistry, 2020, 18, 745-749.	2.8	10
29	Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: a computational perspective. Journal of Biomolecular Structure and Dynamics, 2020, 38, 5126-5135.	3.5	54
30	Recent advances in the synthetic approaches to 2-pyridones (microreview). Chemistry of Heterocyclic Compounds, 2020, 56, 1152-1154.	1.2	3
31	Supported Palladiumâ€Gold Catalyzed Carbonylative Methylthioesterification of Aryl Iodides using Oxalic acid and DMSO as CO and CH ₃ SH Surrogates. Asian Journal of Organic Chemistry, 2020, 9, 2099-2102.	2.7	12
32	Palladium-catalyzed <i>ortho</i> -halogen-induced deoxygenative approach of alkyl aryl ketones to 2-vinylbenzoic acids. Chemical Communications, 2020, 56, 10674-10677.	4.1	8
33	Supported palladium catalyzed aminocarbonylation of aryl iodides employing bench-stable CO and NH ₃ surrogates. Organic and Biomolecular Chemistry, 2020, 18, 7193-7200.	2.8	13
34	Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. Computer Methods and Programs in Biomedicine, 2020, 194, 105494.	4.7	54
35	Polystyreneâ€Supported Palladium (Pd@PS)â€Catalyzed Carbonylative Annulation of Aryl Iodides Using Oxalic Acid as a Sustainable CO Source for the Synthesis of 2â€Aryl Quinazolinones. Chemistry - A European Journal, 2019, 25, 14506-14511.	3.3	27
36	Synthesis of α,β-alkynyl ketones <i>via</i> the nickel catalysed carbonylative Sonogashira reaction using oxalic acid as a sustainable C1 source. Organic and Biomolecular Chemistry, 2019, 17, 7036-7041.	2.8	15

#	Article	IF	CITATIONS
37	Hydrogenation of nitroarenes to anilines in a flow reactor using polystyrene supported rhodium in a catalyst-cartridge (Cart-Rh@PS). New Journal of Chemistry, 2019, 43, 1764-1769.	2.8	7
38	Hypervalent Iodine(III)â€Mediated Counteranion Controlled Intramolecular Annulation of Exocyclic βâ€Enaminone to Carbazolone and Imidazo[1,2â€ <i>a</i>]pyridine Synthesis. Chemistry - A European Journal, 2019, 25, 5934-5939.	3.3	25
39	Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Scientific Reports, 2019, 9, 7904.	3.3	58
40	Synthesis and optical properties of new 2-(5-arylpyridine-2-yl)-6-(het)arylquinoline-based "push-pull― fluorophores. Dyes and Pigments, 2019, 167, 151-156.	3.7	14
41	Supported Palladium Nanoparticles that Catalyze Aminocarbonylation of Aryl Halides with Amines using Oxalic Acid as a Sustainable CO Source. Chemistry - A European Journal, 2019, 25, 4067-4071.	3.3	30
42	Supported Palladium Nanoparticlesâ€Catalyzed Synthesis of 3â€Substituted 2â€Quinolones from 2â€Iodoanilines and Alkynes Using Oxalic Acid as C1 Source. Advanced Synthesis and Catalysis, 2019, 361, 426-431.	4.3	24
43	Supported Rhodium (Rh@PS) Catalyzed Benzimidazoles Synthesis Using Ethanol/Methanol as C ₂ H ₃ /CH Source. Advanced Synthesis and Catalysis, 2019, 361, 67-72.	4.3	24
44	Supported Rhodium Nanoparticles Catalyzed Reduction of Nitroarenes, Arylcarbonyls and Aryl/Benzyl Sulfoxides using Ethanol/Methanol as Inâ€Situ Hydrogen Source. Advanced Synthesis and Catalysis, 2018, 360, 2131-2137.	4.3	18
45	Oxalic/malonic acids as carbon building blocks for benzazole, quinazoline and quinazolinone synthesis. Organic and Biomolecular Chemistry, 2018, 16, 1337-1342.	2.8	33
46	Supported Palladium Nanoparticles Catalyzed Reductive Carbonylation of Nitroarenes to <i>N</i> â€Arylformamides. Advanced Synthesis and Catalysis, 2018, 360, 432-437.	4.3	39
47	Oxalic Acid as Sustainable CO Source for Pyrrolone-Fused Benzosuberenes Synthesis through Palladium Catalyzed Carbonylative Cyclization. ChemistrySelect, 2017, 2, 4626-4629.	1.5	25
48	Iodine(III)â€Promoted Ring Contractive Cyanation of Exocyclic βâ€Enaminones for the Synthesis of Cyanocyclopentanones. Advanced Synthesis and Catalysis, 2017, 359, 2209-2214.	4.3	18
49	Hypervalent Iodineâ€Promoted Aromatization of Exocyclic βâ€Enaminones for the Synthesis of <i>meta</i> â€ <i>N</i> , <i>N</i> â€Diarylaminophenols. Advanced Synthesis and Catalysis, 2017, 359, 2202-2208.	4.3	19
50	Supported palladium nanoparticleâ€catalysed Suzuki–Miyaura crossâ€coupling approach for synthesis of aminoarylbenzosuberene analogues from natural precursor. Applied Organometallic Chemistry, 2017, 31, e3749.	3.5	12
51	Supported palladium nanoparticles as switchable catalyst for aldehyde conjugate/s and acetate ester syntheses from alcohols. New Journal of Chemistry, 2017, 41, 3242-3245.	2.8	10
52	Supported Palladium Nanoparticle Catalyzed α-Alkylation of Ketones Using Alcohols as Alkylating Agents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9683-9691.	6.7	43
53	Polystyrene supported palladium nanoparticles catalyzed cinnamic acid synthesis using maleic anhydride as a substitute for acrylic acid. Catalysis Science and Technology, 2017, 7, 3692-3697.	4.1	12
54	Supported palladium nanoparticles-catalyzed decarboxylative coupling approaches to aryl alkynes, indoles and pyrrolines synthesis. RSC Advances, 2016, 6, 71117-71121.	3.6	25

#	Article	IF	CITATIONS
55	Supported Rhodium Nanoparticleâ€Catalyzed Intermolecular Regioselective Carbonylative Cyclization of Terminal Alkynes using Oxalic Acid as Sustainable C ₁ Source. Advanced Synthesis and Catalysis, 2016, 358, 3743-3747.	4.3	23
56	Supported Gold Nanoparticlesâ€Catalyzed Microwaveâ€Assisted Hydration of Nitriles to Amides under Baseâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 2889-2894.	4.3	23
57	Oxidative "reverse-esterification―of ethanol with benzyl/alkyl alcohols or aldehydes catalyzed by supported rhodium nanoparticles. Green Chemistry, 2016, 18, 1206-1211.	9.0	23
58	Ethyl 3-(2,4-dioxocyclohexyl)propanoate as a novel precursor for N-substituted 4,4a,5,6-tetrahydroquinoline-2,7(1H,3H)-diones and their corresponding 3,4-dihydro-7-hydroxyquinolin-2(1H)-ones and 7-hydroxyquinolin-2(1H)-ones synthesis. Molecular Diversity, 2016, 20, 29-40.	3.9	7
59	Polystyrene resin supported palladium(0) (Pd@PR) nanocomposite catalyzed synthesis of β-aryl and β,β-diaryl unsaturated scaffolds following tandem approaches. RSC Advances, 2015, 5, 24859-24863.	3.6	10
60	Polystyrene resin supported palladium(0) (Pd@PR) nanocomposite mediated regioselective synthesis of 4-aryl-1-alkyl/(2-haloalkyl)-1H-1,2,3-triazoles and their N-vinyl triazole derivatives from terminal alkynes. RSC Advances, 2015, 5, 11506-11514.	3.6	13
61	Polystyrene trimethyl ammonium chloride impregnated Rh(0) (Rh@PMe ₃ NCl) as a catalyst and methylating agent for esterification of alcohols through selective oxidation of methanol. Catalysis Science and Technology, 2015, 5, 2575-2580.	4.1	9
62	Supported Palladium Nanoparticle-Catalyzed Carboxylation of Aryl Halides, Alkenylsilanes, and Organoboronic Acids Employing Oxalic Acid as the C ₁ Source. Organic Letters, 2015, 17, 5352-5355.	4.6	65
63	Strategies for Functionalized Benzocycloheptene Amines Synthesis. Current Organic Chemistry, 2015, 19, 179-196.	1.6	4
64	Solid supported rhodium(0) nanoparticles: an efficient catalyst for chemo- and regio-selective transfer hydrogenation of nitroarenes to anilines under microwave irradiation. Tetrahedron Letters, 2014, 55, 2912-2916.	1.4	33
65	Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of β-Arylvinyl Iodides. Catalysis Letters, 2014, 144, 1530-1536.	2.6	29
66	Synthesis of novel antimicrobial aryl himachalene derivatives from naturally occurring himachalenes. EXCLI Journal, 2014, 13, 1216-25.	0.7	6
67	Cyclohexyl iodide promoted approach for coumarin analog synthesis using small scaffold. Molecular Diversity, 2013, 17, 651-659.	3.9	19
68	Solid-supported ruthenium(0): an efficient heterogeneous catalyst for hydration of nitriles to amides under microwave irradiation. New Journal of Chemistry, 2013, 37, 2987.	2.8	28
69	A solid supported palladium(0) nano/microparticle catalyzed ultrasound induced continuous flow technique for large scale Suzuki reactions. RSC Advances, 2013, 3, 13671.	3.6	31
70	Solid supported Ru(0) nanoparticles: an efficient ligand-free heterogeneous catalyst for aerobic oxidation of benzylic and allylic alcohol to carbonyl. Tetrahedron Letters, 2013, 54, 2924-2928.	1.4	33
71	Microwave assisted solvent and catalyst free method for novel classes of Î ² -enaminoester and acridinedione synthesis. RSC Advances, 2013, 3, 10335.	3.6	21
72	Solid supported platinum(0) nanoparticles catalyzed chemo-selective reduction of nitroarenes to N-arylhydroxylamines. Green Chemistry, 2013, 15, 3421.	9.0	66

#	Article	IF	CITATIONS
73	Consecutive Michael-Claisen Process for Cyclohexane-1,3-dione Derivative (CDD) Synthesis from Unsubstituted and Substituted Acetone. Synlett, 2012, 23, 1199-1204.	1.8	20
74	Solid supported palladium(0) nano/microparticle: a ligand-free efficient recyclable heterogeneous catalyst for mono- and β,β-double-Heck reaction. Tetrahedron Letters, 2012, 53, 7044-7051.	1.4	25
75	Solid supported Pd(0): an efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Tetrahedron Letters, 2012, 53, 4858-4861.	1.4	116
76	Ligand-free solid supported palladium(0) nano/microparticles promoted C–O, C–S, and C–N cross coupling reaction. Tetrahedron Letters, 2012, 53, 5318-5322.	1.4	49
77	Solid‣upported Rhodium(0) Nanoâ€∤Microparticles: An Efficient Ligandâ€Free Heterogeneous Catalyst for Microwaveâ€Assisted Suzuki–Miyaura Crossâ€Coupling Reaction. Advanced Synthesis and Catalysis, 2012, 354, 2911-2915.	4.3	37
78	Naturally Occurring Limonene to Cinnamyl-type γ-Butyrolactone Substituted Aldol Condensation Derivatives as Antioxidant Compounds. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	1
79	Naturally occurring himachalenes to benzocycloheptene amino vinyl bromide derivatives: as antidepressant molecules. Molecular Diversity, 2012, 16, 357-366.	3.9	19
80	Amine and thiazole substituted γ-butyrolactones from naturally occurring limonene. Canadian Journal of Chemistry, 2011, 89, 639-644.	1.1	4
81	One-Pot Multicomponent Michael and Thorpe–Ziegler Reaction of Aryl Methyl Ketones. Synthetic Communications, 2011, 41, 2727-2737.	2.1	2
82	Solid-supported Pd(0): an efficient heterogeneous catalyst for aerobic oxidation of benzyl alcohols into aldehydes and ketones. Tetrahedron Letters, 2011, 52, 4954-4956.	1.4	37
83	Synthesis and application of a bromomethyl substituted scaffold to be used for efficient optimization of anti-virulence activity. European Journal of Medicinal Chemistry, 2011, 46, 1103-1116.	5.5	21
84	Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound. BMC Chemical Biology, 2011, 11, 1.	1.6	4
85	Solid-supported palladium nano and microparticles: an efficient heterogeneous catalyst for ligand-free Suzuki–Miyaura cross coupling reaction. Tetrahedron Letters, 2011, 52, 1176-1178.	1.4	66
86	Copper Promoted C-N and C-O Type Cross-Coupling Reactions. Current Organic Chemistry, 2010, 14, 754-783.	1.6	42
87	Palladium Supported on a Polyionic Resin as an Efficient, Ligand-Free, and Recyclable Catalyst for Heck, Suzuki-Miyaura, and Sonogashira Reactions. Synthesis, 2009, 2009, 1137-1146.	2.3	43
88	Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3536-3540.	2.2	29
89	Recent Advances in KF/alumina Promoted Organic Reactions. Current Organic Chemistry, 2008, 12, 141-158.	1.6	33
90	Chemoselective reduction of aldehydes by ruthenium trichloride and resin-bound formates. Beilstein Journal of Organic Chemistry, 2008, 4, 53.	2.2	11

#	Article	IF	CITATIONS
91	Diverse Functionalization of Thiazolo Ring-Fused 2-Pyridones. Journal of Organic Chemistry, 2007, 72, 4917-4924.	3.2	24
92	Co-immobilized formate anion and palladium on a polymer surface: a novel heterogeneous combination for transfer hydrogenation. Tetrahedron Letters, 2005, 46, 8591-8593.	1.4	24
93	KF?Alumina-Mediated Selective Double Michael Additions of Aryl Methyl Ketones: A Facile Entry to the Synthesis of Functionalized Pimelate Esters and Derivatives ChemInform, 2005, 36, no.	0.0	0
94	Synthesis of ?-Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface ChemInform, 2005, 36, no.	0.0	0
95	Transfer hydrogenation using recyclable polymer-supported formate (PSF): Efficient and chemoselective reduction of nitroarenes. Molecular Diversity, 2005, 9, 259-262.	3.9	15
96	Palladium-Catalyzed Selective Amination of Haloaromatics on KF-Alumina Surface. Synlett, 2005, 2005, 1275-1278.	1.8	11
97	KF-Alumina-Mediated Selective Double Michael Additions of Aryl Methyl Ketones: A Facile Entry to the Synthesis of Functionalized Pimelate Esters and Derivatives. Synlett, 2004, 2004, 2224-2226.	1.8	7
98	Synthesis of β-Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface. Synlett, 2004, 2004, 2630-2632.	1.8	44
99	Microwaveâ€Assisted Copper PromotedNâ€Arylation of Amines with Aryl Boronic Acids/Salts on a KF–Alumina Surface. Synthetic Communications, 2004, 34, 2177-2184.	2.1	21
100	Catalytic Transfer Reduction of Conjugated Alkenes and an Imine Using Polymer-Supported Formates ChemInform, 2004, 35, no.	0.0	0
101	Microwave-Assisted Copper Promoted N-Arylation of Amines with Aryl Boronic Acids/Salts on a KF-Alumina Surface ChemInform, 2004, 35, no.	0.0	0
102	Catalytic transfer reduction of conjugated alkenes and an imine using polymer-supported formates. Tetrahedron Letters, 2003, 44, 8931-8934.	1.4	44
103	Microwave-Assisted Suzuki Coupling on a KF-Alumina Surface: Synthesis of Polyaryls ChemInform, 2003, 34, no.	0.0	0
104	Microwave-assisted Suzuki coupling on a KF–alumina surface: synthesis of polyaryls. Tetrahedron Letters, 2003, 44, 3817-3820.	1.4	68
105	A Simple Protocol for Direct Reductive Amination of Aldehydes and Ketones Using Potassium Formate and Catalytic Palladium Acetate. Synlett, 2003, 2003, 0555-0557.	1.8	23