Pralay Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489329/publications.pdf

Version: 2024-02-01

105 2,543 30 42 g-index

124 124 124 2494 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Solid supported Pd(0): an efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Tetrahedron Letters, 2012, 53, 4858-4861.	0.7	116
2	Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 2021, 128, 104117.	3.9	90
3	Microwave-assisted Suzuki coupling on a KF–alumina surface: synthesis of polyaryls. Tetrahedron Letters, 2003, 44, 3817-3820.	0.7	68
4	Solid-supported palladium nano and microparticles: an efficient heterogeneous catalyst for ligand-free Suzuki–Miyaura cross coupling reaction. Tetrahedron Letters, 2011, 52, 1176-1178.	0.7	66
5	Solid supported platinum(0) nanoparticles catalyzed chemo-selective reduction of nitroarenes to N-arylhydroxylamines. Green Chemistry, 2013, 15, 3421.	4.6	66
6	Supported Palladium Nanoparticle-Catalyzed Carboxylation of Aryl Halides, Alkenylsilanes, and Organoboronic Acids Employing Oxalic Acid as the C ₁ Source. Organic Letters, 2015, 17, 5352-5355.	2.4	65
7	A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in Biology and Medicine, 2021, 135, 104555.	3.9	60
8	Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Scientific Reports, 2019, 9, 7904.	1.6	58
9	Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 2021, 113, 707-715.	1.3	58
10	Identification of acridinedione scaffolds as potential inhibitor of DENVâ€2 C protein: An in silico strategy to combat dengue. Journal of Cellular Biochemistry, 2022, 123, 935-946.	1.2	57
11	Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: a computational perspective. Journal of Biomolecular Structure and Dynamics, 2020, 38, 5126-5135.	2.0	54
12	Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. Computer Methods and Programs in Biomedicine, 2020, 194, 105494.	2.6	54
13	Advances in Transitionâ€Metal Catalyzed Carbonylative Suzukiâ€Miyaura Coupling Reaction: An Update. Advanced Synthesis and Catalysis, 2021, 363, 1597-1624.	2.1	51
14	Ligand-free solid supported palladium(0) nano/microparticles promoted C–O, C–S, and C–N cross coupling reaction. Tetrahedron Letters, 2012, 53, 5318-5322.	0.7	49
15	Identification of $11\hat{l}^2$ -HSD1 inhibitors through enhanced sampling methods. Chemical Communications, 2022, 58, 5005-5008.	2.2	48
16	Catalytic transfer reduction of conjugated alkenes and an imine using polymer-supported formates. Tetrahedron Letters, 2003, 44, 8931-8934.	0.7	44
17	Synthesis of \hat{l}^2 -Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface. Synlett, 2004, 2004, 2630-2632.	1.0	44
18	Palladium Supported on a Polyionic Resin as an Efficient, Ligand-Free, and Recyclable Catalyst for Heck, Suzuki-Miyaura, and Sonogashira Reactions. Synthesis, 2009, 2009, 1137-1146.	1.2	43

#	Article	IF	CITATIONS
19	Supported Palladium Nanoparticle Catalyzed α-Alkylation of Ketones Using Alcohols as Alkylating Agents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9683-9691.	3.2	43
20	Copper Promoted C-N and C-O Type Cross-Coupling Reactions. Current Organic Chemistry, 2010, 14, 754-783.	0.9	42
21	Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7693-7701.	2.0	40
22	Supported Palladium Nanoparticles Catalyzed Reductive Carbonylation of Nitroarenes to <i>N</i> â€Arylformamides. Advanced Synthesis and Catalysis, 2018, 360, 432-437.	2.1	39
23	Solid-supported Pd(0): an efficient heterogeneous catalyst for aerobic oxidation of benzyl alcohols into aldehydes and ketones. Tetrahedron Letters, 2011, 52, 4954-4956.	0.7	37
24	Solidâ€Supported Rhodium(0) Nanoâ€∤Microparticles: An Efficient Ligandâ€Free Heterogeneous Catalyst for Microwaveâ€Assisted Suzuki–Miyaura Crossâ€Coupling Reaction. Advanced Synthesis and Catalysis, 2012, 354, 2911-2915.	2.1	37
25	Recent Advances in KF/alumina Promoted Organic Reactions. Current Organic Chemistry, 2008, 12, 141-158.	0.9	33
26	Solid supported Ru(0) nanoparticles: an efficient ligand-free heterogeneous catalyst for aerobic oxidation of benzylic and allylic alcohol to carbonyl. Tetrahedron Letters, 2013, 54, 2924-2928.	0.7	33
27	Solid supported rhodium(0) nanoparticles: an efficient catalyst for chemo- and regio-selective transfer hydrogenation of nitroarenes to anilines under microwave irradiation. Tetrahedron Letters, 2014, 55, 2912-2916.	0.7	33
28	Oxalic/malonic acids as carbon building blocks for benzazole, quinazoline and quinazolinone synthesis. Organic and Biomolecular Chemistry, 2018, 16, 1337-1342.	1.5	33
29	Identification of naturally originated molecules as \hat{I}^3 -aminobutyric acid receptor antagonist. Journal of Biomolecular Structure and Dynamics, 2021, 39, 911-922.	2.0	33
30	A solid supported palladium(0) nano/microparticle catalyzed ultrasound induced continuous flow technique for large scale Suzuki reactions. RSC Advances, 2013, 3, 13671.	1.7	31
31	Supported Palladium Nanoparticles that Catalyze Aminocarbonylation of Aryl Halides with Amines using Oxalic Acid as a Sustainable CO Source. Chemistry - A European Journal, 2019, 25, 4067-4071.	1.7	30
32	Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3536-3540.	1.0	29
33	Solid Supported Palladium(0) Nanoparticles: An Efficient Heterogeneous Catalyst for Regioselective Hydrosilylation of Alkynes and Suzuki Coupling of \hat{I}^2 -Arylvinyl Iodides. Catalysis Letters, 2014, 144, 1530-1536.	1.4	29
34	Solid-supported ruthenium (0): an efficient heterogeneous catalyst for hydration of nitriles to amides under microwave irradiation. New Journal of Chemistry, 2013, 37, 2987.	1.4	28
35	Polystyreneâ€Supported Palladium (Pd@PS)â€Catalyzed Carbonylative Annulation of Aryl Iodides Using Oxalic Acid as a Sustainable CO Source for the Synthesis of 2â€Aryl Quinazolinones. Chemistry - A European Journal, 2019, 25, 14506-14511.	1.7	27
36	Solid supported palladium(0) nano/microparticle: a ligand-free efficient recyclable heterogeneous catalyst for mono- and \hat{l}^2 , \hat{l}^2 -double-Heck reaction. Tetrahedron Letters, 2012, 53, 7044-7051.	0.7	25

#	Article	IF	CITATIONS
37	Supported palladium nanoparticles-catalyzed decarboxylative coupling approaches to aryl alkynes, indoles and pyrrolines synthesis. RSC Advances, 2016, 6, 71117-71121.	1.7	25
38	Oxalic Acid as Sustainable CO Source for Pyrrolone-Fused Benzosuberenes Synthesis through Palladium Catalyzed Carbonylative Cyclization. ChemistrySelect, 2017, 2, 4626-4629.	0.7	25
39	Hypervalent Iodine(III)â€Mediated Counteranion Controlled Intramolecular Annulation of Exocyclic βâ€Enaminone to Carbazolone and Imidazo[1,2â€ <i>a</i>]pyridine Synthesis. Chemistry - A European Journal, 2019, 25, 5934-5939.	1.7	25
40	Co-immobilized formate anion and palladium on a polymer surface: a novel heterogeneous combination for transfer hydrogenation. Tetrahedron Letters, 2005, 46, 8591-8593.	0.7	24
41	Diverse Functionalization of Thiazolo Ring-Fused 2-Pyridones. Journal of Organic Chemistry, 2007, 72, 4917-4924.	1.7	24
42	Supported Palladium Nanoparticlesâ€Catalyzed Synthesis of 3â€Substituted 2â€Quinolones from 2â€Iodoanilines and Alkynes Using Oxalic Acid as C1 Source. Advanced Synthesis and Catalysis, 2019, 361, 426-431.	2.1	24
43	Supported Rhodium (Rh@PS) Catalyzed Benzimidazoles Synthesis Using Ethanol/Methanol as C ₂ H ₃ /CH Source. Advanced Synthesis and Catalysis, 2019, 361, 67-72.	2.1	24
44	A Simple Protocol for Direct Reductive Amination of Aldehydes and Ketones Using Potassium Formate and Catalytic Palladium Acetate. Synlett, 2003, 2003, 0555-0557.	1.0	23
45	Supported Rhodium Nanoparticleâ€Catalyzed Intermolecular Regioselective Carbonylative Cyclization of Terminal Alkynes using Oxalic Acid as Sustainable C ₁ Source. Advanced Synthesis and Catalysis, 2016, 358, 3743-3747.	2.1	23
46	Supported Gold Nanoparticlesâ€Catalyzed Microwaveâ€Assisted Hydration of Nitriles to Amides under Baseâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 2889-2894.	2.1	23
47	Oxidative "reverse-esterification―of ethanol with benzyl/alkyl alcohols or aldehydes catalyzed by supported rhodium nanoparticles. Green Chemistry, 2016, 18, 1206-1211.	4.6	23
48	Microwaveâ€Assisted Copper PromotedNâ€Arylation of Amines with Aryl Boronic Acids/Salts on a KF–Alumina Surface. Synthetic Communications, 2004, 34, 2177-2184.	1.1	21
49	Synthesis and application of a bromomethyl substituted scaffold to be used for efficient optimization of anti-virulence activity. European Journal of Medicinal Chemistry, 2011, 46, 1103-1116.	2.6	21
50	Microwave assisted solvent and catalyst free method for novel classes of \hat{l}^2 -enaminoester and acridinedione synthesis. RSC Advances, 2013, 3, 10335.	1.7	21
51	Consecutive Michael-Claisen Process for Cyclohexane-1,3-dione Derivative (CDD) Synthesis from Unsubstituted and Substituted Acetone. Synlett, 2012, 23, 1199-1204.	1.0	20
52	Naturally occurring himachalenes to benzocycloheptene amino vinyl bromide derivatives: as antidepressant molecules. Molecular Diversity, 2012, 16, 357-366.	2.1	19
53	Cyclohexyl iodide promoted approach for coumarin analog synthesis using small scaffold. Molecular Diversity, 2013, 17, 651-659.	2.1	19
54	Hypervalent Iodineâ€Promoted Aromatization of Exocyclic βâ€Enaminones for the Synthesis of ⟨i⟩meta⟨ i⟩â€⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩â€Diarylaminophenols. Advanced Synthesis and Catalysis, 2017, 359, 2202-2208.	2.1	19

#	Article	IF	CITATIONS
55	Lignocellulosic biomass and carbohydrates as feed-stock for scalable production of 5-hydroxymethylfurfural. Cellulose, 2021, 28, 3967-3980.	2.4	19
56	lodine(III)â€Promoted Ring Contractive Cyanation of Exocyclic βâ€Enaminones for the Synthesis of Cyanocyclopentanones. Advanced Synthesis and Catalysis, 2017, 359, 2209-2214.	2.1	18
57	Supported Rhodium Nanoparticles Catalyzed Reduction of Nitroarenes, Arylcarbonyls and Aryl/Benzyl Sulfoxides using Ethanol/Methanol as Inâ€Situ Hydrogen Source. Advanced Synthesis and Catalysis, 2018, 360, 2131-2137.	2.1	18
58	Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution. Journal of Industrial and Engineering Chemistry, 2021, 104, 286-294.	2.9	17
59	Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catalysis, 2022, 12, 6672-6701.	5.5	17
60	Transfer hydrogenation using recyclable polymer-supported formate (PSF): Efficient and chemoselective reduction of nitroarenes. Molecular Diversity, 2005, 9, 259-262.	2.1	15
61	Synthesis of $\hat{l}\pm,\hat{l}^2$ -alkynyl ketones <i>via</i> the nickel catalysed carbonylative Sonogashira reaction using oxalic acid as a sustainable C1 source. Organic and Biomolecular Chemistry, 2019, 17, 7036-7041.	1.5	15
62	Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. Pesticide Biochemistry and Physiology, 2021, 175, 104858.	1.6	15
63	Synthesis and optical properties of new 2-(5-arylpyridine-2-yl)-6-(het)arylquinoline-based "push-pull― fluorophores. Dyes and Pigments, 2019, 167, 151-156.	2.0	14
64	Application of cyclohexane-1,3-diones for six-membered oxygen-containing heterocycles synthesis. Bioorganic Chemistry, 2021, 107, 104559.	2.0	14
65	Polystyrene resin supported palladium(0) (Pd@PR) nanocomposite mediated regioselective synthesis of 4-aryl-1-alkyl/(2-haloalkyl)-1H-1,2,3-triazoles and their N-vinyl triazole derivatives from terminal alkynes. RSC Advances, 2015, 5, 11506-11514.	1.7	13
66	Supported palladium catalyzed aminocarbonylation of aryl iodides employing bench-stable CO and NH ₃ surrogates. Organic and Biomolecular Chemistry, 2020, 18, 7193-7200.	1.5	13
67	Pdâ€Catalysed Decarbonylation Free Approach to Carbonylative Esterification of 5â€HMF to Its Aryl Esters Synthesis Using Aryl Halides and Oxalic Acid as C ₁ Source. Chemistry - A European Journal, 2021, 27, 12971-12975.	1.7	13
68	Supported Palladium Catalyzed Carbonylative Coupling Reactions using Carbon Monoxide as C1 Source. Chemical Record, 2022, 22, .	2.9	13
69	Supported palladium nanoparticleâ€catalysed Suzuki–Miyaura crossâ€coupling approach for synthesis of aminoarylbenzosuberene analogues from natural precursor. Applied Organometallic Chemistry, 2017, 31, e3749.	1.7	12
70	Polystyrene supported palladium nanoparticles catalyzed cinnamic acid synthesis using maleic anhydride as a substitute for acrylic acid. Catalysis Science and Technology, 2017, 7, 3692-3697.	2.1	12
71	Supported Palladiumâ€Gold Catalyzed Carbonylative Methylthioesterification of Aryl Iodides using Oxalic acid and DMSO as CO and CH ₃ SH Surrogates. Asian Journal of Organic Chemistry, 2020, 9, 2099-2102.	1.3	12
72	Evaluation of plant-derived semi-synthetic molecules against BRD3-BD2 protein: a computational strategy to combat breast cancer. Molecular Systems Design and Engineering, 2022, 7, 381-391.	1.7	12

#	Article	IF	CITATIONS
73	Palladium-Catalyzed Selective Amination of Haloaromatics on KF-Alumina Surface. Synlett, 2005, 2005, 1275-1278.	1.0	11
74	Chemoselective reduction of aldehydes by ruthenium trichloride and resin-bound formates. Beilstein Journal of Organic Chemistry, 2008, 4, 53.	1.3	11
75	Identification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. Journal of Molecular Liquids, 2022, 348, 118015.	2.3	11
76	Polystyrene resin supported palladium(0) (Pd@PR) nanocomposite catalyzed synthesis of \hat{l}^2 -aryl and \hat{l}^2 , \hat{l}^2 -diaryl unsaturated scaffolds following tandem approaches. RSC Advances, 2015, 5, 24859-24863.	1.7	10
77	Supported palladium nanoparticles as switchable catalyst for aldehyde conjugate/s and acetate ester syntheses from alcohols. New Journal of Chemistry, 2017, 41, 3242-3245.	1.4	10
78	Iodine(iii) promoted ring-rearrangement reaction of 1-arylamino-2-oxocyclopentane-1-carbonitriles to synthesize N-aryl-1´-valerolactams. Organic and Biomolecular Chemistry, 2020, 18, 745-749.	1.5	10
79	Polystyrene trimethyl ammonium chloride impregnated Rh(0) (Rh@PMe ₃ NCl) as a catalyst and methylating agent for esterification of alcohols through selective oxidation of methanol. Catalysis Science and Technology, 2015, 5, 2575-2580.	2.1	9
80	Metal Catalyst and Hydrogen Gas-Free Selective Reduction of Biomass-Derived Substituted Furfuraldehyde to Alkyl Furan as a Key Biofuel Additive. Organic Process Research and Development, 2021, 25, 892-899.	1.3	9
81	Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorganic Chemistry, 2021, 112, 104860.	2.0	9
82	Palladium-catalyzed <i>ortho</i> -halogen-induced deoxygenative approach of alkyl aryl ketones to 2-vinylbenzoic acids. Chemical Communications, 2020, 56, 10674-10677.	2.2	8
83	Free Amine, Hydroxyl and Sulfhydryl Directed Câ [^] H Functionalization and Annulation: Application to Heterocycle Synthesis. Chemical Record, 2022, 22, .	2.9	8
84	KF-Alumina-Mediated Selective Double Michael Additions of Aryl Methyl Ketones: A Facile Entry to the Synthesis of Functionalized Pimelate Esters and Derivatives. Synlett, 2004, 2004, 2224-2226.	1.0	7
85	Ethyl 3-(2,4-dioxocyclohexyl)propanoate as a novel precursor for N-substituted 4,4a,5,6-tetrahydroquinoline-2,7(1H,3H)-diones and their corresponding 3,4-dihydro-7-hydroxyquinolin-2(1H)-ones and 7-hydroxyquinolin-2(1H)-ones synthesis. Molecular Diversity, 2016, 20, 29-40.	2.1	7
86	Hydrogenation of nitroarenes to anilines in a flow reactor using polystyrene supported rhodium in a catalyst-cartridge (Cart-Rh@PS). New Journal of Chemistry, 2019, 43, 1764-1769.	1.4	7
87	New ecdysone receptor agonists: a computational approach for rational discovery of insecticides for crop protection. Molecular Systems Design and Engineering, 2021, 6, 936-945.	1.7	7
88	Pd/C Catalyzed Cascade Synthesis of 2â€Arylquinazolinones from 2â€Iodoacetanilides Employing Ammonia and CO Precursors. ChemCatChem, 2021, 13, 2459-2464.	1.8	7
89	Synthesis of novel antimicrobial aryl himachalene derivatives from naturally occurring himachalenes. EXCLI Journal, 2014, 13, 1216-25.	0.5	6
90	Supported-Pd catalyzed tandem approach for N-arylbenzamides synthesis. Molecular Catalysis, 2021, 516, 111948.	1.0	6

#	Article	IF	CITATIONS
91	Synthetic approaches for cyclohexane-1,3-diones: A versatile precursor for bioactive molecules. Synthetic Communications, 2021, 51, 2553-2573.	1.1	5
92	Amine and thiazole substituted \hat{I}^3 -butyrolactones from naturally occurring limonene. Canadian Journal of Chemistry, 2011, 89, 639-644.	0.6	4
93	Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound. BMC Chemical Biology, 2011, 11, 1.	1.6	4
94	Polystyrene stabilized iridium nanoparticles catalyzed chemo- and regio-selective semi-hydrogenation of nitroarenes to N-arylhydroxylamines. Molecular Catalysis, 2021, 514, 111836.	1.0	4
95	Strategies for Functionalized Benzocycloheptene Amines Synthesis. Current Organic Chemistry, 2015, 19, 179-196.	0.9	4
96	Recent advances in the synthetic approaches to 2-pyridones (microreview). Chemistry of Heterocyclic Compounds, 2020, 56, 1152-1154.	0.6	3
97	Rhodium catalyzed 2â€alkylâ€benzimidazoles synthesis from benzeneâ€1,2â€diamines and tertiary alkylamines a alkylating agents. Applied Organometallic Chemistry, 2021, 35, e6278.	S 1.7	3
98	One-Pot Multicomponent Michael and Thorpe–Ziegler Reaction of Aryl Methyl Ketones. Synthetic Communications, 2011, 41, 2727-2737.	1.1	2
99	Application of Cyclohexaneâ€1,3â€diones in the Synthesis of Sixâ€Membered Nitrogenâ€Containing Heterocycles. ChemistrySelect, 2022, 7, .	0.7	2
100	Naturally Occurring Limonene to Cinnamyl-type \hat{l}^3 -Butyrolactone Substituted Aldol Condensation Derivatives as Antioxidant Compounds. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	1
101	Microwave-Assisted Suzuki Coupling on a KF-Alumina Surface: Synthesis of Polyaryls ChemInform, 2003, 34, no.	0.1	0
102	Catalytic Transfer Reduction of Conjugated Alkenes and an Imine Using Polymer-Supported Formates ChemInform, 2004, 35, no.	0.1	0
103	Microwave-Assisted Copper Promoted N-Arylation of Amines with Aryl Boronic Acids/Salts on a KF-Alumina Surface ChemInform, 2004, 35, no.	0.1	O
104	KF?Alumina-Mediated Selective Double Michael Additions of Aryl Methyl Ketones: A Facile Entry to the Synthesis of Functionalized Pimelate Esters and Derivatives ChemInform, 2005, 36, no.	0.1	0
105	Synthesis of ?-Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface ChemInform, 2005, 36, no.	0.1	0