Robert A Distasio Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489166/publications.pdf

Version: 2024-02-01

61 papers 13,498 citations

87723 38 h-index 63 g-index

65 all docs 65 does citations

65 times ranked

13463 citing authors

#	Article	lF	CITATIONS
1	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
2	Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chemical Science, 2021, 12, 3898-3910.	3.7	47
3	QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules. Scientific Data, 2021, 8, 43.	2.4	46
4	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
5	Electron confinement meet electron delocalization: non-additivity and finite-size effects in the polarizabilities and dispersion coefficients of the fullerenes. Physical Chemistry Chemical Physics, 2021, 23, 5773-5779.	1.3	4
6	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based <i>Ab Initio</i> Molecular Dynamics II: Extensions to the Isobaric–Isoenthalpic and Isobaric–Isothermal Ensembles. Journal of Chemical Theory and Computation, 2021, 17, 7789-7813.	2.3	7
7	NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts. Journal of Chemical Physics, 2021, 155, 184303.	1.2	15
8	Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles. Journal of Chemical Physics, 2020, 153, 024113.	1.2	65
9	Area-selective atomic layer deposition enabled by competitive adsorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 062411.	0.9	8
10	Oxyaapa: A Picolinate-Based Ligand with Five Oxygen Donors that Strongly Chelates Lanthanides. Inorganic Chemistry, 2020, 59, 5116-5132.	1.9	14
11	Attracting Opposites: Promiscuous Ionâ'Ï€ Binding in the Nucleobases. Journal of Physical Chemistry A, 2020, 124, 4128-4140.	1.1	3
12	Tuning the Mechanical Properties of Metallopolymers via Ligand Interactions: A Combined Experimental and Theoretical Study. Macromolecules, 2020, 53, 2021-2030.	2.2	18
13	Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nature Chemistry, 2020, 12, 747-754.	6.6	176
14	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based <i>Ab Initio</i> Molecular Dynamics. 1. Theory, Algorithm, and Performance. Journal of Chemical Theory and Computation, 2020, 16, 3757-3785.	2.3	29
15	Competitive Adsorption as a Route to Area-Selective Deposition. ACS Applied Materials & Deposition. AC	4.0	14
16	Isotope effects in liquid water via deep potential molecular dynamics. Molecular Physics, 2019, 117, 3269-3281.	0.8	52
17	Quantum mechanical static dipole polarizabilities in the QM7b and AlphaML showcase databases. Scientific Data, 2019, 6, 152.	2.4	20
18	Accurate molecular polarizabilities with coupled cluster theory and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3401-3406.	3.3	126

#	Article	IF	Citations
19	Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials. Physical Review Letters, 2019, 122, 026001.	2.9	11
20	Reliable and practical computational description of molecular crystal polymorphs. Science Advances, 2019, 5, eaau 3338.	4.7	127
21	Rational design of stealthy hyperuniform two-phase media with tunable order. Physical Review E, 2018, 97, 023311.	0.8	17
22	Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science, 2018, 359, 1131-1136.	6.0	247
23	Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films. Journal of the American Chemical Society, 2018, 140, 4639-4648.	6.6	99
24	Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning. Journal of Chemical Physics, 2018, 148, 241706.	1.2	136
25	Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nature Chemistry, 2018, 10, 413-419.	6.6	175
26	Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials. Journal of Chemical Physics, 2018, 148, 102325.	1.2	10
27	On the geometric dependence of the molecular dipole polarizability in water: A benchmark study of higher-order electron correlation, basis set incompleteness error, core electron effects, and zero-point vibrational contributions. Journal of Chemical Physics, 2018, 149, 204303.	1.2	11
28	Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters. Nature Communications, 2018, 9, 2880.	5.8	58
29	Thermal expansion in dispersion-bound molecular crystals. Physical Review Materials, 2018, 2, .	0.9	18
30	First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews, 2017, 117, 4714-4758.	23.0	408
31	eQE: An openâ€source density functional embedding theory code for the condensed phase. International Journal of Quantum Chemistry, 2017, 117, e25401.	1.0	40
32	Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 439-459.	0.5	445
33	Inverse design of disordered stealthy hyperuniform spin chains. Physical Review B, 2016, 93, .	1.1	14
34	Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science, 2016, 351, 1171-1176.	6.0	217
35	Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions. Chemical Science, 2016, 7, 1712-1728.	3.7	33
36	A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Molecular Physics, 2015, 113, 2842-2854.	0.8	47

#	Article	IF	Citations
37	Local structure analysis in <i>ab initio</i> liquid water. Molecular Physics, 2015, 113, 2829-2841.	0.8	96
38	Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions. Journal of Physical Chemistry A, 2015, 119, 5865-5882.	1.1	44
39	Electronic Properties of Molecules and Surfaces with a Self-Consistent Interatomic van der Waals Density Functional. Physical Review Letters, 2015, 114, 176802.	2.9	79
40	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
41	Shared memory multiprocessing implementation of resolution-of-the-identity second-order Møller–Plesset perturbation theory with attenuated and unattenuated results for intermolecular interactions between large molecules. Molecular Physics, 2014, 112, 836-843.	0.8	10
42	The individual and collective effects of exact exchange and dispersion interactions on the <i>ab initio</i> structure of liquid water. Journal of Chemical Physics, 2014, 141, 084502.	1.2	276
43	Long-range correlation energy calculated from coupled atomic response functions. Journal of Chemical Physics, 2014, 140, 18A508.	1.2	480
44	Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. Journal of Physical Chemistry Letters, 2014, 5, 849-855.	2.1	159
45	Many-body van der Waals interactions in molecules and condensed matter. Journal of Physics Condensed Matter, 2014, 26, 213202.	0.7	190
46	Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. Journal of Chemical Physics, 2013, 138, 074106.	1.2	129
47	Manyâ€Body Dispersion Interactions in Molecular Crystal Polymorphism. Angewandte Chemie - International Edition, 2013, 52, 6629-6632.	7.2	149
48	Designer spin systems via inverse statistical mechanics. II. Ground-state enumeration and classification. Physical Review B, 2013, 88, .	1.1	7
49	Designer spin systems via inverse statistical mechanics. Physical Review B, 2013, 88, .	1.1	14
50	Accurate and Efficient Method for Many-Body van der Waals Interactions. Physical Review Letters, 2012, 108, 236402.	2.9	1,120
51	Collective many-body van der Waals interactions in molecular systems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14791-14795.	3.3	178
52	Current Status of the AMOEBA Polarizable Force Field. Journal of Physical Chemistry B, 2010, 114, 2549-2564.	1.2	1,093
53	The 1,4-phenylenediisocyanide dimer: gas-phase properties and insights into organic self-assembled monolayers. Physical Chemistry Chemical Physics, 2010, 12, 82-96.	1.3	4
54	Dispersion-corrected Møller–Plesset second-order perturbation theory. Journal of Chemical Physics, 2009, 131, 094106.	1.2	223

#	Article	IF	CITATIONS
55	Non-Covalent Interactions with Dual-Basis Methods: Pairings for Augmented Basis Sets. Journal of Chemical Theory and Computation, 2009, 5, 1560-1572.	2.3	39
56	The analytical gradient of dual-basis resolution-of-the-identity second-order Møller–Plesset perturbation theory. Molecular Physics, 2007, 105, 2731-2742.	0.8	31
57	Optimized spin-component scaled second-order Møller-Plesset perturbation theory for intermolecular interaction energies. Molecular Physics, 2007, 105, 1073-1083.	0.8	225
58	An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order MÃ,ller-Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis. Journal of Computational Chemistry, 2007, 28, 839-856.	1.5	134
59	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	1.3	2,597
60	Dual-basis second-order Mĸller-Plesset perturbation theory: A reduced-cost reference for correlation calculations. Journal of Chemical Physics, 2006, 125, 074108.	1.2	90
61	A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order MÃ,llerâ^'Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. Journal of Chemical Theory and Computation, 2005, 1, 862-876.	2.3	90