Livia Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8488744/publications.pdf

Version: 2024-02-01

		10986	4228
181	53,506	71	174
papers	citations	h-index	g-index
187	187	187	17030
107	107	107	17030
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
11	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
14	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
15	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
16	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext>â€%</mml:mtext> cmml:mtext> â€% cmml:mtext> a€% cmml:mtext> a€% a€%<td>ıml:nstext></td><td>∙∢nasakmsub></td></mml:mrow></mml:math>	ıml :ns text>	∙∢n asa kmsub>
17	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
18	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728

#	Article	IF	Citations
19	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
20	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
21	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
22	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
23	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
24	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
25	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
26	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
27	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
28	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
29	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
30	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
31	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
32	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
33	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
34	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
35	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
36	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225

#	Article	IF	CITATIONS
37	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
38	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
39	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
40	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
41	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
42	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
43	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
44	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
45	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
46	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
47	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
48	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
49	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
50	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
51	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
52	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
53	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
54	Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Physics, 2013, 9, 71-73.	16.7	102

#	Article	IF	Citations
55	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
56	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100 , .	4.7	102
57	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
58	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
59	First Search for Gravitational Wave Bursts with a Network of Detectors. Physical Review Letters, 2000, 85, 5046-5050.	7.8	95
60	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
61	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
62	Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D, 2003, 68, .	4.7	90
63	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
64	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
65	Thermoelastic effects at low temperatures and quantum limits in displacement measurements. Physical Review D, 2001, 63, .	4.7	85
66	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
67	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
68	Wideband Dual Sphere Detector of Gravitational Waves. Physical Review Letters, 2001, 87, 031101.	7.8	81
69	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
70	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
71	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
72	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72

#	Article	IF	CITATIONS
73	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
74	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
75	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
76	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
77	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
78	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
79	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
80	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
81	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
82	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
83	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
84	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
85	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
86	3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors. Physical Review Letters, 2005, 94, .	7.8	56
87	Feedback Cooling of the Normal Modes of a Massive Electromechanical System to Submillikelvin Temperature. Physical Review Letters, 2008, 101, 033601.	7.8	56
88	Nonequilibrium Steady-State Fluctuations in Actively Cooled Resonators. Physical Review Letters, 2009, 103, 010601.	7.8	56
89	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
90	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52

#	Article	IF	CITATIONS
91	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
92	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
93	Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D, 2007, 76, .	4.7	50
94	Thermal and back-action noises in dual-sphere gravitational-wave detectors. Physical Review D, 2003, 67, .	4.7	49
95	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
96	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
97	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
98	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
99	Status report and near future prospects for the gravitational wave detector AURIGA. Classical and Quantum Gravity, 2002, 19, 1925-1933.	4.0	45
100	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
101	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	. 0.784314 . 4.0	4 rgBT /Overl
102	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
103	Search for an Ultralight Scalar Dark Matter Candidate with the AURIGA Detector. Physical Review Letters, 2017, 118, 021302.	7.8	38
104	Experimental Measurement of the Dynamic Photothermal Effect in Fabry-Perot Cavities for Gravitational Wave Detectors. Physical Review Letters, 2002, 89, 237402.	7.8	37
105	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	7.8	36
106	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
107	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
108	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32

#	Article	IF	CITATIONS
109	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
110	Selective readout and back-action reduction for wideband acoustic gravitational wave detectors. Physical Review D, 2003, 68, .	4.7	31
111	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
112	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
113	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
114	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
115	Room temperature gravitational wave bar detector with optomechanical readout. Journal of Applied Physics, 2003, 93, 3589-3595.	2.5	26
116	Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillators subject to heat flux. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P12003.	2.3	26
117	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
118	Optical transduction chain for gravitational wave bar detectors. Review of Scientific Instruments, 1998, 69, 554-558.	1.3	24
119	Investigation on Planck scale physics by the AURIGA gravitational bar detector. New Journal of Physics, 2014, 16, 085012.	2.9	23
120	Wideband mechanical response of a high-Q silicon double-paddle oscillator. Journal of Micromechanics and Microengineering, 2011, 21, 065019.	2.6	22
121	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
122	A folded Fabry–Perot cavity for optical sensing in gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 309, 15-23.	2.1	20
123	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
124	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
125	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
126	High-spectral-purity laser system for the AURIGA detector optical readout. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 462.	2.1	19

#	Article	IF	CITATIONS
127	Upper Limits on Gravitational-Wave Emission in Association with the 27ÂDecÂ2004 Giant Flare of SGR1806-20. Physical Review Letters, 2005, 95, 081103.	7.8	19
128	Principles of wide bandwidth acoustic detectors and the single-mass dual detector. Physical Review D, 2006, 74, .	4.7	19
129	IGEC2: A 17-month search for gravitational wave bursts in 2005–2007. Physical Review D, 2010, 82, .	4.7	19
130	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
131	INITIAL OPERATION OF THE INTERNATIONAL GRAVITATIONAL EVENT COLLABORATION. International Journal of Modern Physics D, 2000, 09, 237-245.	2.1	18
132	Low-amplitude-noise laser for AURIGA detector optical readout. Applied Optics, 2000, 39, 5732.	2.1	18
133	Energy repartition for a harmonic chain with local reservoirs. Physical Review E, 2015, 92, 022129.	2.1	18
134	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
135	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
136	First room temperature operation of the AURIGA optical readout. Classical and Quantum Gravity, 2002, 19, 1919-1924.	4.0	15
137	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
138	Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4K. Review of Scientific Instruments, 2008, 79, 033901.	1.3	13
139	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
140	RareNoise: non-equilibrium effects in detectors of gravitational waves. Classical and Quantum Gravity, 2010, 27, 084032.	4.0	13
141	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
142	Elasticity of mechanical oscillators in nonequilibrium steady states: Experimental, numerical, and theoretical results. Physical Review E, 2012, 85, 066605.	2.1	11
143	Application of sapphire bonding for suspension of cryogenic mirrors. Journal of Physics: Conference Series, 2006, 32, 309-314.	0.4	10
144	Possible nonequilibrium imprint in the cosmic background at low frequencies. Physical Review Research, 2020, 2, .	3.6	10

#	Article	IF	CITATIONS
145	Search for gravitational wave bursts by the network of resonant detectors. Classical and Quantum Gravity, 2002, 19, 1367-1375.	4.0	9
146	Wide bandwidth dual acoustic gravitational wave detectors. Classical and Quantum Gravity, 2004, 21, S1155-S1159.	4.0	9
147	Harmonic damped oscillators with feedback: a Langevin study. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P10016.	2.3	9
148	One-dimensional models and thermomechanical properties of solids. Physical Review B, 2011, 84, .	3.2	9
149	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
150	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
151	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
152	Status report of the gravitational wave detector AURIGA. AIP Conference Proceedings, 2000, , .	0.4	6
153	New suspension system for the gravitational wave bar detector AURIGA. Review of Scientific Instruments, 2005, 76, 084502.	1.3	6
154	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
155	A compact, passive setup for low vibration noise measurements in the frequency band (300–2000) Hz. Review of Scientific Instruments, 2010, 81, 035115.	1.3	4
156	A wideband and sensitive GW detector for kHz frequencies: the dual sphere. Classical and Quantum Gravity, 2002, 19, 2013-2019.	4.0	3
157	Selective Coating Deposition on High-Q Single-crystal Silicon Resonators for the Investigation of Thermal Noise Statistical Properties. Procedia Engineering, 2014, 87, 1485-1488.	1.2	3
158	Thermal noise of mechanical oscillators in steady states with a heat flux. Physical Review E, 2014, 90, 032119.	2.1	3
159	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	1.3	3
160	The gravitational wave burst observatory: Present state and future perspectives. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 537-544.	0.4	2
161	Electro-optical signal readout for gravitational waves resonant detectors. AIP Conference Proceedings, 2001, , .	0.4	2
162	An optical readout scheme for advanced acoustic GW detectors. Classical and Quantum Gravity, 2004, 21, S1237-S1240.	4.0	2

#	Article	IF	CITATIONS
163	Statistical distribution of bonding distances in a unidimensional solid. Physica A: Statistical Mechanics and Its Applications, 2014, 412, 19-31.	2.6	2
164	Low loss single-crystal silicon mechanical resonators for the investigation of thermal noise statistical properties. Sensors and Actuators A: Physical, 2015, 227, 48-54.	4.1	2
165	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
166	Wide bandwidth dual acoustic gravitational wave detectors. Nuclear Physics, Section B, Proceedings Supplements, 2005, 138, 443-445.	0.4	1
167	APPLICATION OF SAPPHIRE BONDING FOR INTERFEROMETRIC GRAVITATIONAL WAVE DETECTOR WITH CRYOGENIC MIRRORS. International Journal of Modern Physics A, 2005, 20, 7060-7062.	1.5	1
168	Optical metrology for massive detectors of gravitational waves. Optics and Lasers in Engineering, 2007, 45, 471-477.	3.8	1
169	A vibration-free, thermally controlled setup for mechanical thermal noise measurements. EPJ Applied Physics, 2012, 57, 21001.	0.7	1
170	Non-equilibrium "thermal noise" of low loss oscillators. Journal of Physics: Conference Series, 2012, 363, 012011.	0.4	1
171	Efficient second harmonic generation with compact design: double-pass and cavity configurations. Laser Physics, 2018, 28, 115401.	1.2	1
172	Resonant detectors for gravitational waves. Advances in Space Research, 2000, 25, 1171-1176.	2.6	0
173	An optical transduction chain for the AURIGA detector. AIP Conference Proceedings, 2000, , .	0.4	0
174	Laser system for the AURIGA detector optical transduction chain. , 2003, , .		0
175	The AURIGA second scientific run and the dual detector of gravitational waves. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518, 236-239.	1.6	0
176	Dual detectors of gravitational waves. , 2004, , .		0
177	Interferometric readout for acoustic gravitational wave detectors. AIP Conference Proceedings, 2005, , .	0.4	0
178	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0
179	Low temperature mechanical dissipation measurements of silicon and silicon carbide as candidate material for DUAL detector. Journal of Physics: Conference Series, 2008, 122, 012030.	0.4	0
180	Advanced Readout Configurations for the Gravitational Wave Detector AURIGA., 2002, , 317-331.		O

ARTICLE IF CITATIONS

181 CMB Experiments and GravitationalWaves., 2022,, 243-281. o