
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8488553/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | One‣tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion<br>Polymerization. Angewandte Chemie - International Edition, 2022, 61, .                                                                             | 7.2 | 42        |
| 2  | One‣tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion<br>Polymerization. Angewandte Chemie, 2022, 134, .                                                                                                    | 1.6 | 4         |
| 3  | Design of selective divalent chain transfer agents for coordinative chain transfer polymerization of ethylene and its copolymerization with butadiene. Polymer Chemistry, 2022, 13, 1970-1977.                                                    | 1.9 | 11        |
| 4  | Telechelic polyethylene, poly(ethylene- <i>co</i> -vinyl acetate) and triblock copolymers based on<br>ethylene and vinyl acetate by iodine transfer polymerization. Polymer Chemistry, 2022, 13, 2469-2476.                                       | 1.9 | 3         |
| 5  | Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable<br>Strategy to Make Olefin Block Copolymers. Angewandte Chemie - International Edition, 2022, 61, .                                                  | 7.2 | 11        |
| 6  | Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable<br>Strategy to Make Olefin Block Copolymers. Angewandte Chemie, 2022, 134, .                                                                         | 1.6 | 4         |
| 7  | Laponite®-based colloidal nanocomposites prepared by RAFT-mediated surfactant-free emulsion polymerization: the role of non-ionic and anionic macroRAFT polymers in stability and morphology control. Polymer Chemistry, 2021, 12, 69-81.         | 1.9 | 10        |
| 8  | Influence of structure and solubility of chain transfer agents on the RAFT control of dispersion polymerisation in scCO <sub>2</sub> . Chemical Science, 2021, 12, 1016-1030.                                                                     | 3.7 | 4         |
| 9  | Thermomorphic Polyethylene‣upported Organocatalysts for the Valorization of Vegetable Oils and CO <sub>2</sub> . Advanced Sustainable Systems, 2021, 5, 2000218.                                                                                  | 2.7 | 11        |
| 10 | Triphenylphosphineâ€Functionalized Coreâ€Crossâ€Linked Micelles and Nanogels with a Polycationic Outer<br>Shell: Synthesis and Application in Rhodiumâ€Catalyzed Biphasic Hydrogenations. Chemistry - A European<br>Journal, 2021, 27, 5205-5214. | 1.7 | 7         |
| 11 | Surfactant-free emulsion polymerization of vinylidene fluoride mediated by RAFT/MADIX reactive poly(ethylene glycol) polymer chains. Polymer Chemistry, 2021, 12, 5640-5649.                                                                      | 1.9 | 7         |
| 12 | Statistical and Block Copolymers of Ethylene and Vinyl Acetate via Reversible Additionâ€Fragmentation Chain Transfer Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100270.                                                     | 2.0 | 8         |
| 13 | Polymer/Laponite Nanocomposite Films Produced from Surfactant-Free Latexes using Cationic<br>Macromolecular Reversible Addition-Fragmentation Chain Transfer Copolymers. Macromolecules,<br>2021, 54, 7480-7491.                                  | 2.2 | 4         |
| 14 | Organocatalytic Synthesis of Substituted Vinylene Carbonates. Advanced Synthesis and Catalysis, 2021,<br>363, 5129-5137.                                                                                                                          | 2.1 | 5         |
| 15 | Block copolymers based on ethylene and methacrylates using a combination of catalytic chain<br>transfer polymerisation (CCTP) and radical polymerization. Angewandte Chemie, 2021, 133, 25560.                                                    | 1.6 | 0         |
| 16 | Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain<br>Transfer Polymerisation (CCTP) and Radical Polymerisation. Angewandte Chemie - International<br>Edition, 2021, 60, 25356-25364.                    | 7.2 | 5         |
| 17 | RAFTâ€vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angewandte Chemie, 2020, 132, 8444-8470.                                                                                                                                   | 1.6 | 45        |
| 18 | RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020,<br>59, 8368-8392.                                                                                                                         | 7.2 | 374       |

| #  | Article                                                                                                                                                                                                                               | IF        | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 19 | Polymerization of Vinyl Chloride at Ambient Temperature Using Macromolecular Design via the<br>Interchange of Xanthate: Kinetic and Computational Studies. Macromolecules, 2020, 53, 190-202.                                         | 2.2       | 12        |
| 20 | Poly(vinyl acetate- <i>co</i> -ethylene) particles prepared by surfactant-free emulsion polymerization in<br>the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent. Polymer Chemistry,<br>2020, 11, 7410-7420. | 1.9       | 3         |
| 21 | Iodineâ€Transfer Polymerization (ITP) of Ethylene and Copolymerization with Vinyl Acetate. Angewandte<br>Chemie - International Edition, 2020, 59, 19304-19310.                                                                       | 7.2       | 15        |
| 22 | The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.                                                                                                                                      | 1.1       | 69        |
| 23 | Iodineâ€Transfer Polymerization (ITP) of Ethylene and Copolymerization with Vinyl Acetate. Angewandte<br>Chemie, 2020, 132, 19466-19472.                                                                                              | 1.6       | 5         |
| 24 | Well-Defined Thermo-Responsive Copolymers Based on Oligo(Ethylene Glycol) Methacrylate and<br>Pentafluorostyrene for the Removal of Organic Dyes from Water. Nanomaterials, 2020, 10, 1779.                                           | 1.9       | 13        |
| 25 | One-pot syntheses of heterotelechelic α-vinyl,ï‰-methoxysilane polyethylenes and condensation into<br>comb-like and star-like polymers with high chain end functionality. Polymer Chemistry, 2020, 11,<br>3884-3891.                  | 1.9       | 11        |
| 26 | Poly(ethylene glycol)- <i>b</i> -poly(vinyl acetate) block copolymer particles with various<br>morphologies <i>via</i> RAFT/MADIX aqueous emulsion PISA. Polymer Chemistry, 2020, 11, 3922-3930.                                      | 1.9       | 25        |
| 27 | Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the<br>Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules, 2020,<br>21, 4479-4491.                 | 2.6       | 11        |
| 28 | Filling of Nanometric Pores with Polymer by Initiated Chemical Vapor Deposition. Macromolecular<br>Rapid Communications, 2020, 41, 2000200.                                                                                           | 2.0       | 2         |
| 29 | Ethylene Polymerizationâ€Induced Selfâ€Assembly (PISA) of Poly(ethylene oxide)â€ <i>block</i> â€polyethyle<br>Copolymers via RAFT. Angewandte Chemie - International Edition, 2020, 59, 10385-10390.                                  | ne<br>7.2 | 24        |
| 30 | Core-Cross-Linked Micelles Made by RAFT Polymerization with a Polycationic Outer Shell Based on Poly(1-methyl-4-vinylpyridinium). Macromolecules, 2020, 53, 2198-2208.                                                                | 2.2       | 10        |
| 31 | Ethylene Polymerizationâ€Induced Selfâ€Assembly (PISA) of Poly(ethylene oxide)―block â€polyethylene<br>Copolymers via RAFT. Angewandte Chemie, 2020, 132, 10471-10476.                                                                | 1.6       | 10        |
| 32 | A Thermomorphic Polyethylene‣upported Imidazolium Salt for the Fixation of CO <sub>2</sub> into Cyclic Carbonates. Advanced Synthesis and Catalysis, 2020, 362, 1696-1705.                                                            | 2.1       | 15        |
| 33 | New Insight into Cluster Aggregation Mechanism during Polymerization-Induced Self-Assembly by<br>Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2019, 123, 6609-6617.                                                | 1.2       | 24        |
| 34 | Aromatic Xanthates and Dithiocarbamates for the Polymerization of Ethylene through Reversible<br>Addition–Fragmentation Chain Transfer (RAFT). Angewandte Chemie - International Edition, 2019, 58,<br>14295-14302.                   | 7.2       | 26        |
| 35 | Aromatic Xanthates and Dithiocarbamates for the Polymerization of Ethylene through Reversible<br>Addition–Fragmentation Chain Transfer (RAFT). Angewandte Chemie, 2019, 131, 14433-14440.                                             | 1.6       | 15        |
| 36 | Synthesis of PMMA-based block copolymers by consecutive irreversible and reversible ad reversible addition–fragmentation chain transfer polymerizations. Polymer Chemistry, 2019, 10, 6630-6640.                                      | 1.9       | 11        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical<br>Resilience and Shapeâ€Memory Properties. Angewandte Chemie - International Edition, 2019, 58,<br>15883-15889.                          | 7.2 | 24        |
| 38 | Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical<br>Resilience and Shapeâ€Memory Properties. Angewandte Chemie, 2019, 131, 16030-16036.                                                    | 1.6 | 3         |
| 39 | Identification of a Transient but Key Motif in the Living Coordinative Chain Transfer<br>Cyclocopolymerization of Ethylene with Butadiene. ACS Catalysis, 2019, 9, 9298-9309.                                                         | 5.5 | 14        |
| 40 | Tailoring the Morphology of Polymer/Montmorillonite Hybrid Latexes by Surfactant-Free Emulsion<br>Polymerization Mediated by Amphipathic MacroRAFT Agents. Macromolecules, 2019, 52, 4979-4988.                                       | 2.2 | 19        |
| 41 | Bis-N,N-aminophosphine (PNP) crosslinked poly(p-tert-butyl styrene) particles: A new support for<br>heterogeneous palladium catalysts for Suzuki coupling reactions. Catalysis Communications, 2019,<br>129, 105715.                  | 1.6 | 9         |
| 42 | In Situ Monitoring of Latex Film Formation by Small-Angle Neutron Scattering: Evolving Distributions of Hydrophilic Stabilizers in Drying Colloidal Films. Langmuir, 2019, 35, 3822-3831.                                             | 1.6 | 18        |
| 43 | Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate)<br>particles in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 5760-5770.                                               | 1.9 | 4         |
| 44 | Polymer Nanospheres with Hydrophobic Surface Groups as Supramolecular Building Blocks Produced by Aqueous PISA. Macromolecular Rapid Communications, 2019, 40, e1800455.                                                              | 2.0 | 12        |
| 45 | Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose<br>materials in the wet state. Nanoscale, 2019, 11, 4287-4302.                                                                       | 2.8 | 22        |
| 46 | Structural and Mechanical Properties of Supramolecular Polyethylenes. Macromolecules, 2018, 51, 2630-2640.                                                                                                                            | 2.2 | 28        |
| 47 | Enhanced Water Barrier Properties of Surfactant-Free Polymer Films Obtained by MacroRAFT-Mediated Emulsion Polymerization. ACS Applied Materials & 2018, 10, 11221-11232.                                                             | 4.0 | 48        |
| 48 | Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte<br>Chemie - International Edition, 2018, 57, 305-309.                                                                                       | 7.2 | 39        |
| 49 | Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte<br>Chemie, 2018, 130, 311-315.                                                                                                              | 1.6 | 13        |
| 50 | Australian European Selfâ€Assembly through Macromolecular Interactions II. Macromolecular Rapid<br>Communications, 2018, 39, e1800556.                                                                                                | 2.0 | 0         |
| 51 | Coordinative chain transfer copolymerization of ethylene and styrene using an<br><i>ansa</i> -bis(fluorenyl) neodymium complex and dialkylmagnesium. Polymer Chemistry, 2018, 9,<br>3262-3271.                                        | 1.9 | 2         |
| 52 | Controlling the Morphology of Film-Forming, Nanocomposite Latexes Containing Layered Double<br>Hydroxide by RAFT-Mediated Emulsion Polymerization. Macromolecules, 2018, 51, 3953-3966.                                               | 2.2 | 23        |
| 53 | Monofunctional and Telechelic Polyethylenes Carrying Phosphonic Acid End Groups.<br>Macromolecular Rapid Communications, 2018, 39, e1800154.                                                                                          | 2.0 | 12        |
| 54 | Dialkenylmagnesium Compounds in Coordinative Chain Transfer Polymerization of Ethylene.<br>Reversible Chain Transfer Agents and Tools To Probe Catalyst Selectivities toward Ring Formation.<br>Organometallics, 2018, 37, 1546-1554. | 1.1 | 16        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Light induced polyethylene ligation. Polymer Chemistry, 2018, 9, 3633-3637.                                                                                                                                                              | 1.9 | 3         |
| 56 | Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization. Polymer Chemistry, 2017, 8, 1233-1243.                                                                               | 1.9 | 37        |
| 57 | Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polymer Chemistry, 2017, 8, 1061-1073.                                       | 1.9 | 36        |
| 58 | Opportunities for dual RDRP agents in synthesizing novel polymeric materials. Polymer Chemistry, 2017, 8, 4916-4946.                                                                                                                     | 1.9 | 35        |
| 59 | Initiated hemical Vapor Deposition of Polymer Thin Films: Unexpected Twoâ€Regime Growth.<br>Macromolecular Materials and Engineering, 2017, 302, 1700315.                                                                                | 1.7 | 12        |
| 60 | Amino End-Functionalized Polyethylenes and Corresponding Telechelics by Coordinative Chain<br>Transfer Polymerization. Macromolecules, 2017, 50, 8372-8377.                                                                              | 2.2 | 31        |
| 61 | High-performance water-based barrier coatings for the corrosion protection of structural steel.<br>Steel Construction, 2017, 10, 254-259.                                                                                                | 0.4 | 13        |
| 62 | Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for Cross-Linked and<br>Surfactant-Free Films. Macromolecules, 2017, 50, 9315-9328.                                                                         | 2.2 | 52        |
| 63 | Core-Cross-Linked Micelles and Amphiphilic Nanogels as Unimolecular Nanoreactors for<br>Micellar-Type, Metal-Based Aqueous Biphasic Catalysis. Fundamental and Applied Catalysis, 2017, ,<br>147-172.                                    | 0.9 | 5         |
| 64 | Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides.<br>Beilstein Journal of Nanotechnology, 2016, 7, 2000-2012.                                                                                | 1.5 | 9         |
| 65 | Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic<br>Compound Vectorization in Phosphineâ€Functionalized Amphiphilic Polymer Latexes. Chemistry - A<br>European Journal, 2016, 22, 6302-6313. | 1.7 | 16        |
| 66 | The Effect of Hydrophile Topology in RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte<br>Chemie, 2016, 128, 3803-3807.                                                                                                  | 1.6 | 22        |
| 67 | The Effect of Hydrophile Topology in RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte<br>Chemie - International Edition, 2016, 55, 3739-3743.                                                                           | 7.2 | 126       |
| 68 | pH-Switchable Stratification of Colloidal Coatings: Surfaces "On Demand― ACS Applied Materials<br>& Interfaces, 2016, 8, 34755-34761.                                                                                                    | 4.0 | 40        |
| 69 | From well-defined poly( N -acryloylmorpholine)-stabilized nanospheres to uniform mannuronan- and guluronan-decorated nanoparticles by RAFT polymerization-induced self-assembly. Polymer, 2016, 106, 218-228.                            | 1.8 | 39        |
| 70 | Core phosphine-functionalized amphiphilic nanogels as catalytic nanoreactors for aqueous biphasic hydroformylation. Journal of Catalysis, 2016, 342, 164-172.                                                                            | 3.1 | 28        |
| 71 | Surfactant-free poly(vinylidene chloride) latexes via one-pot RAFT-mediated aqueous polymerization.<br>Polymer, 2016, 106, 275-284.                                                                                                      | 1.8 | 30        |
| 72 | Active and Recyclable Polyethyleneâ€Supported Iridiumâ€(N―Heterocyclic Carbene) Catalyst for<br>Hydrogen/Deuterium Exchange Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2317-2323.                                           | 2.1 | 10        |

| #  | Article                                                                                                                                                                                                                  | IF          | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 73 | Dynamic Stratification in Drying Films of Colloidal Mixtures. Physical Review Letters, 2016, 116, 118301.                                                                                                                | 2.9         | 105       |
| 74 | Australian European Selfâ€Assembly through Macromolecular Interactions. Macromolecular Chemistry and Physics, 2016, 217, 2207-2208.                                                                                      | 1.1         | 1         |
| 75 | Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules, 2016, 17, 1414-1424.                                                    | 2.6         | 43        |
| 76 | Deciphering the Mechanism of Coordinative Chain Transfer Polymerization of Ethylene Using Neodymocene Catalysts and Dialkylmagnesium. ACS Catalysis, 2016, 6, 851-860.                                                   | 5.5         | 50        |
| 77 | Synthesis of poly(N-acryloylmorpholine) macromonomers using RAFT and their copolymerization with methacrylic acid for the design of graft copolymer additives for concrete. Polymer Chemistry, 2016, 7, 917-925.         | 1.9         | 14        |
| 78 | Synthesis of Nanocapsules and Polymer/Inorganic Nanoparticles Through Controlled Radical<br>Polymerization At and Near Interfaces in Heterogeneous Media. Advances in Polymer Science, 2015, ,<br>123-161.               | 0.4         | 12        |
| 79 | Synthesis of Block Copolymers Based on Polyethylene by Thermally Induced Controlled Radical<br>Polymerization Using Mn <sub>2</sub> (CO) <sub>10</sub> . Macromolecular Chemistry and Physics,<br>2015, 216, 958-963.    | 1.1         | 30        |
| 80 | Amphiphilic core-cross-linked micelles functionalized with bis(4-methoxyphenyl)phenylphosphine as catalytic nanoreactors forÂbiphasic hydroformylation. Polymer, 2015, 72, 327-335.                                      | 1.8         | 39        |
| 81 | Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based<br>Triblock Terpolymers. ACS Nano, 2015, 9, 10085-10098.                                                             | 7.3         | 29        |
| 82 | Divinylâ€Endâ€Functionalized Polyethylenes: Ready Access to a Range of Telechelic Polyethylenes through<br>Thiol–Ene Reactions. Angewandte Chemie - International Edition, 2015, 54, 4631-4635.                          | 7.2         | 49        |
| 83 | Aqueous phase homogeneous catalysis using core–shell nanoreactors: Application to rhodium-catalyzed hydroformylation of 1-octene. Journal of Catalysis, 2015, 324, 1-8.                                                  | 3.1         | 48        |
| 84 | Alkoxyamine-functionalized latex nanoparticles through RAFT polymerization-induced self-assembly in water. Polymer Chemistry, 2015, 6, 5405-5413.                                                                        | 1.9         | 35        |
| 85 | Encapsulation with the Use of Controlled Radical Polymerization. , 2015, , 718-729.                                                                                                                                      |             | 4         |
| 86 | Microphase Separation and Crystallization in H-Bonding End-Functionalized Polyethylenes.<br>Macromolecules, 2015, 48, 3257-3268.                                                                                         | 2.2         | 32        |
| 87 | One-Pot RAFT Synthesis of Triphenylphosphine-Functionalized Amphiphilic Core-Shell Polymers and<br>Application as Catalytic Nanoreactors in Aqueous Biphasic Hydroformylation. ACS Symposium Series,<br>2015, , 203-220. | 0.5         | 11        |
| 88 | SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). Macromolecular Chemistry and Physics, 2015, 216, 23-37.                                                                                                   | 1.1         | 46        |
| 89 | RAFT/MADIX copolymerization of vinyl acetate and 5,6â€benzoâ€2â€methyleneâ€1,3â€dioxepane. Journal of Poly<br>Science Part A, 2014, 52, 104-111.                                                                         | /mer<br>2.5 | 27        |
| 90 | Novel technologies and chemistries for waterborne coatings. Journal of Coatings Technology<br>Research, 2014, 11, 131-141.                                                                                               | 1.2         | 5         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Emulsion Polymerization of Vinyl Acetate in the Presence of Different Hydrophilic Polymers Obtained by RAFT/MADIX. Macromolecules, 2014, 47, 3461-3472.                                                                                           | 2.2 | 61        |
| 92  | Synthesis of multi-hollow clay-armored latexes by surfactant-free emulsion polymerization of<br>styrene mediated by poly(ethylene oxide)-based macroRAFT/Laponite complexes. Polymer Chemistry,<br>2014, 5, 6611-6622.                            | 1.9 | 33        |
| 93  | Polymerization of Ethylene through Reversible Addition–Fragmentation Chain Transfer (RAFT).<br>Angewandte Chemie - International Edition, 2014, 53, 6683-6686.                                                                                    | 7.2 | 85        |
| 94  | Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polymer Chemistry, 2014, 5, 6076-6086.                                                                    | 1.9 | 62        |
| 95  | Core–Shell Nanoreactors for Efficient Aqueous Biphasic Catalysis. Chemistry - A European Journal,<br>2014, 20, 15505-15517.                                                                                                                       | 1.7 | 68        |
| 96  | Encapsulation with the Use of Controlled Radical Polymerization. , 2014, , 1-13.                                                                                                                                                                  |     | 2         |
| 97  | Effect of the pH on the RAFT Polymerization of Acrylic Acid in Water. Application to the Synthesis of Poly(acrylic acid)-Stabilized Polystyrene Particles by RAFT Emulsion Polymerization. Macromolecules, 2013, 46, 6013-6023.                   | 2.2 | 155       |
| 98  | Study of the solution and aqueous emulsion copolymerization of vinylidene chloride with methyl<br>acrylate in the presence a poly(ethylene oxide) macromolecular RAFT agent. Polymer, 2013, 54,<br>6547-6554.                                     | 1.8 | 14        |
| 99  | Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents. Polymer Chemistry, 2013, 4, 607-614.                                                                                                                    | 1.9 | 62        |
| 100 | RAFT-mediated one-pot aqueous emulsion polymerization of methyl methacrylate in presence of<br>poly(methacrylic acid-co-poly(ethylene oxide) methacrylate) trithiocarbonate macromolecular chain<br>transfer agent. Polymer, 2013, 54, 2011-2019. | 1.8 | 111       |
| 101 | Grafting of polyethylene onto graphite oxide sheets: a comparison of two routes. Polymer Chemistry, 2013, 4, 2828.                                                                                                                                | 1.9 | 37        |
| 102 | Telechelic Polyethylene from Catalyzed Chainâ€Growth Polymerization. Angewandte Chemie -<br>International Edition, 2013, 52, 3438-3441.                                                                                                           | 7.2 | 71        |
| 103 | Di- and Triblock Copolymers Based on Polyethylene and Polyisobutene Blocks. Toward New<br>Thermoplastic Elastomers. Macromolecules, 2013, 46, 3417-3424.                                                                                          | 2.2 | 38        |
| 104 | Poly(vinylidene chloride)-Based Amphiphilic Block Copolymers. Macromolecules, 2013, 46, 664-673.                                                                                                                                                  | 2.2 | 16        |
| 105 | Biotin-end-functionalized highly fluorescent water-soluble polymers. Polymer Chemistry, 2013, 4, 2968.                                                                                                                                            | 1.9 | 38        |
| 106 | The Charging of Micellar Nanoparticles in Electrospray Ionization. ChemPhysChem, 2013, 14, 603-609.                                                                                                                                               | 1.0 | 17        |
| 107 | Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules, 2013, 46, 29-36.                                                                                                                                                              | 2.2 | 13        |
| 108 | Polyethylene end functionalization using thia-Michael addition chemistry. Polymer Chemistry, 2012, 3, 2383.                                                                                                                                       | 1.9 | 23        |

| #   | Article                                                                                                                                                                                                                         | IF                | CITATIONS            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 109 | Well-Defined Amphiphilic Block Copolymer Nanoobjects via Nitroxide-Mediated Emulsion Polymerization. ACS Macro Letters, 2012, 1, 47-51.                                                                                         | 2.3               | 103                  |
| 110 | Stabilization of Miniemulsion Droplets by Cerium Oxide Nanoparticles: A Step toward the Elaboration of Armored Composite Latexes. Langmuir, 2012, 28, 6163-6174.                                                                | 1.6               | 44                   |
| 111 | Completely Miscible Polyethylene Nanocomposites. Journal of the American Chemical Society, 2012, 134, 18157-18160.                                                                                                              | 6.6               | 60                   |
| 112 | Batch Emulsion Polymerization Mediated by Poly(methacrylic acid) MacroRAFT Agents: One-Pot<br>Synthesis of Self-Stabilized Particles. Macromolecules, 2012, 45, 5881-5893.                                                      | 2.2               | 139                  |
| 113 | Poly(ethylene) brushes grafted to silicon substrates. Polymer Chemistry, 2012, 3, 1838-1845.                                                                                                                                    | 1.9               | 31                   |
| 114 | Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer<br>Nano-Objects in One Step. Macromolecules, 2012, 45, 6753-6765.                                                                          | 2.2               | 724                  |
| 115 | Toward a Better Understanding of the Parameters that Lead to the Formation of Nonspherical<br>Polystyrene Particles via RAFT-Mediated One-Pot Aqueous Emulsion Polymerization. Macromolecules,<br>2012, 45, 4075-4084.          | 2.2               | 184                  |
| 116 | Efficient Copper-Mediated Surface-Initiated Polymerization from Raw Polymer Latex in Water.<br>Macromolecules, 2012, 45, 2972-2980.                                                                                             | 2.2               | 16                   |
| 117 | Direct Molar Mass Determination of Self-Assembled Amphiphilic Block Copolymer Nanoobjects Using Electrospray-Charge Detection Mass Spectrometry. ACS Macro Letters, 2012, 1, 414-417.                                           | 2.3               | 47                   |
| 118 | RAFT Polymerization of Methacrylic Acid in Water. Macromolecules, 2012, 45, 1241-1247.                                                                                                                                          | 2.2               | 72                   |
| 119 | Polyethylenes bearing a terminal porphyrin group. Chemical Communications, 2011, 47, 7057.                                                                                                                                      | 2.2               | 26                   |
| 120 | Polyethylene End Functionalization Using Radical-Mediated Thiolâ^'Ene Chemistry: Use of Polyethylenes<br>Containing Alkene End Functionality. Macromolecules, 2011, 44, 3381-3387.                                              | 2.2               | 35                   |
| 121 | Well-Defined Amphiphilic Block Copolymers and Nano-objects Formed <i>in Situ</i> via RAFT-Mediated<br>Aqueous Emulsion Polymerization. Macromolecules, 2011, 44, 4149-4158.                                                     | 2.2               | 222                  |
| 122 | Controlled radical polymerization of styrene in miniemulsion mediated by PEO-based trithiocarbonate macromolecular RAFT agents. Polymer Chemistry, 2011, 2, 355-362.                                                            | 1.9               | 94                   |
| 123 | One-Pot Synthesis of Poly(methacrylic acid- <i>co</i> -poly(ethylene oxide) methyl ether) Tj ETQq1 1 0.784314 rg<br>via RAFT-Mediated Radical Emulsion Polymerization. A Kinetic Study. Macromolecules, 2011, 44,<br>7584-7593. | gBT /Overl<br>2.2 | lock 10 Tf 50<br>164 |
| 124 | Nitroxide-Mediated Copolymerization of Methacrylic Acid and Sodium 4-Styrenesulfonate in Water<br>Solution and One-Pot Synthesis of Amphiphilic Block Copolymer Nanoparticles. Macromolecules, 2011,<br>44, 5590-5598.          | 2.2               | 59                   |
| 125 | Wellâ€defined polyolefin/poly(εâ€caprolactone) diblock copolymers: New synthetic strategy and application. Journal of Polymer Science Part A, 2011, 49, 511-517.                                                                | 2.5               | 50                   |
| 126 | Block copolymers via macromercaptan initiated ring opening polymerization. Journal of Polymer<br>Science Part A, 2011, 49, 803-813.                                                                                             | 2.5               | 19                   |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Synthesis of polyethyleneâ€grafted multiwalled carbon nanotubes via a peroxideâ€initiating radical<br>coupling reaction and by using wellâ€defined TEMPO and thiol endâ€functionalized polyethylenes.<br>Journal of Polymer Science Part A, 2011, 49, 957-965. | 2.5  | 17        |
| 128 | Amphiphilic Block Copolymers from a Direct and Oneâ€pot RAFT Synthesis in Water. Macromolecular<br>Rapid Communications, 2011, 32, 1270-1276.                                                                                                                  | 2.0  | 113       |
| 129 | Synthesis of Cyclopentadienyl Capped Polyethylene and Subsequent Block Copolymer Formation Via<br>Hetero Dielsâ€Alder (HDA) Chemistry. Macromolecular Rapid Communications, 2011, 32, 1447-1453.                                                               | 2.0  | 26        |
| 130 | A RAFT Analogue Olefin Polymerization Technique Using Coordination Chemistry. Australian Journal of Chemistry, 2010, 63, 1155.                                                                                                                                 | 0.5  | 32        |
| 131 | Preparation of Hybrid Latex Particles and Core–Shell Particles Through the Use of Controlled<br>Radical Polymerization Techniques in Aqueous Media. Advances in Polymer Science, 2010, , 125-183.                                                              | 0.4  | 56        |
| 132 | Catalyzed chain growth (CCG) on a main group metal: an efficient tool to functionalize polyethylene.<br>Polymer Chemistry, 2010, 1, 793.                                                                                                                       | 1.9  | 112       |
| 133 | Thiol-End-Functionalized Polyethylenes. Macromolecules, 2010, 43, 7495-7503.                                                                                                                                                                                   | 2.2  | 36        |
| 134 | RAFT copolymerization of methacrylic acid and poly(ethylene glycol) methyl ether methacrylate in the presence of a hydrophobic chain transfer agent in organic solution and in water. Journal of Polymer Science Part A, 2009, 47, 3045-3055.                  | 2.5  | 63        |
| 135 | Use of a Poly(ethylene oxide) MacroRAFT Agent as Both a Stabilizer and a Control Agent in Styrene<br>Polymerization in Aqueous Dispersed System. Macromolecules, 2009, 42, 946-956.                                                                            | 2.2  | 66        |
| 136 | Polyethylene Building Blocks by Catalyzed Chain Growth and Efficient End Functionalization<br>Strategies, Including Click Chemistry. Angewandte Chemie - International Edition, 2008, 47, 9311-9313.                                                           | 7.2  | 121       |
| 137 | Synthesis of Lipid-α-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer<br>Particle Assemblies. Macromolecules, 2008, 41, 8346-8353.                                                                                             | 2.2  | 36        |
| 138 | Additional Retardation in RAFT Polymerization: Detection of Terminated Intermediate Radicals.<br>Macromolecular Rapid Communications, 2007, 28, 856-862.                                                                                                       | 2.0  | 33        |
| 139 | Combining Steric and Electrostatic Stabilization Using Hydrophilic MacroRAFT Agents in anAb Initio<br>Emulsion Polymerization of Styrene. Macromolecular Rapid Communications, 2007, 28, 1325-1332.                                                            | 2.0  | 78        |
| 140 | Subâ€Micrometer Sized Hairy Latex Particles Synthesized by Dispersion Polymerization Using Hydrophilic<br>Macromolecular RAFT Agents. Macromolecular Rapid Communications, 2007, 28, 1540-1545.                                                                | 2.0  | 47        |
| 141 | Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions. Progress in Polymer Science, 2007, 32, 419-454.                                                                  | 11.8 | 119       |
| 142 | Catalyzed chain growth of polyethylene on magnesium for the synthesis of macroalkoxyamines:<br>Application to the production of block copolymers using controlled radical polymerization. Journal<br>of Polymer Science Part A, 2007, 45, 2705-2718.           | 2.5  | 44        |
| 143 | Versatile Precursors of Functional RAFT Agents. Application to the Synthesis of Bio-Related<br>End-Functionalized Polymers. Journal of the American Chemical Society, 2006, 128, 2546-2547.                                                                    | 6.6  | 160       |
| 144 | New Functional Polyolefins: Towards a Bridge Between Catalytic and RAFT Polymerizations?.<br>Macromolecular Rapid Communications, 2006, 27, 173-181.                                                                                                           | 2.0  | 56        |

| #   | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthetic and characterization aspects of dimethylaminoethyl methacrylate reversible addition<br>fragmentation chain transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2005, 43,<br>3551-3565.                                                                         | 2.5 | 84        |
| 146 | Block Copolymers of γ-Methacryloxypropyltrimethoxysilane and Methyl Methacrylate by RAFT<br>Polymerization. A New Class of Polymeric Precursors for the Solâ^'Gel Process. Macromolecules, 2005,<br>38, 1591-1598.                                                                      | 2.2 | 54        |
| 147 | Use of a Lewis Acid Surfactant Combined Catalyst in Cationic Polymerization in Miniemulsion:Â<br>Apparent and Hidden Initiators. Macromolecules, 2004, 37, 3136-3142.                                                                                                                   | 2.2 | 46        |
| 148 | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nuclear magnetic resonance analyses of end-functionalized saccharidic polymers: an example of a useful analytical technique combination. Rapid Communications in Mass Spectrometry, 2004, 18, 664-672. | 0.7 | 5         |
| 149 | Oligonucleotide synthesis onto poly(N-acryloylmorpholine-co-N-acryloxysuccinimide): Assessment of the resulting conjugates in a DNA sandwich hybridization test. Journal of Applied Polymer Science, 2004, 92, 3784-3795.                                                               | 1.3 | 18        |
| 150 | Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights. Polymer, 2004, 45, 7821-7830.                                                                                                 | 1.8 | 106       |
| 151 | Synthesis of Comblike Poly(butyl methacrylate) Using Reversible Additionâ^'Fragmentation Chain<br>Transfer and an Activated Ester. Macromolecules, 2004, 37, 2371-2382.                                                                                                                 | 2.2 | 55        |
| 152 | Synthesis and Characterization of Macroalkoxyamines Based on Polyethylene. Macromolecules, 2004, 37, 3540-3542.                                                                                                                                                                         | 2.2 | 48        |
| 153 | High molecular weight hydrophilic functional copolymers by free-radical copolymerization of<br>acrylamide and ofN-acryloylmorpholine withN-acryloxysuccinimide: Application to the synthesis of a<br>graft copolymer. Journal of Applied Polymer Science, 2003, 88, 1808-1816.          | 1.3 | 23        |
| 154 | Latex particles bearing hydrophilic grafted hairs with controlled chain length and functionality<br>synthesized by reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A,<br>2003, 41, 1188-1195.                                                         | 2.5 | 39        |
| 155 | Molecular Weight and Functional End Group Control by RAFT Polymerization of a Bisubstituted Acrylamide Derivative. Macromolecules, 2003, 36, 621-629.                                                                                                                                   | 2.2 | 110       |
| 156 | Kinetic Study of the "Living―Cationic Polymerization of a Galactose Carrying Vinyl Ether. MALDI-TOF MS Analysis of the Resulting Glycopolymers. Macromolecules, 2002, 35, 7911-7918.                                                                                                    | 2.2 | 34        |
| 157 | Polymer of Controlled Chain Length Carrying Hydrophilic Galactose Moieties for Immobilization of DNA Probes. Macromolecular Chemistry and Physics, 2002, 203, 146-154.                                                                                                                  | 1.1 | 19        |
| 158 | Side-Product ofN-Acryloyloxysuccinimide Synthesis or Useful New Bifunctional Monomer?.<br>Macromolecular Bioscience, 2001, 1, 322-328.                                                                                                                                                  | 2.1 | 19        |
| 159 | Kinetic Study of Free-Radical Solution Copoly- merization ofN-AcryloyImorpholine with an Activated<br>Ester-Type Monomer,N-Acryloxysuccinimide. Macromolecular Chemistry and Physics, 2001, 202,<br>1689-1699.                                                                          | 1.1 | 51        |
| 160 | Polymerization&;#x02010;Induced Self&;#x02010;Assembly: The Contribution of Controlled<br>Radical Polymerization to The Formation of Self&;#x02010;Stabilized Polymer Particles of Various<br>Morphologies. , 0, , 33-82.                                                               |     | 40        |