
Valeri Goncharov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8488208/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A case study of using x-ray Thomson scattering to diagnose the in-flight plasma conditions of DT cryogenic implosions. Physics of Plasmas, 2022, 29, 072703.	1.9	7
2	Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions. Physics of Plasmas, 2021, 28, .	1.9	26
3	Fuel convergence sensitivity in indirect drive implosions. Physics of Plasmas, 2021, 28, 042705.	1.9	11
4	Ionization state and dielectric constant in cold rarefied hydrocarbon plasmas of inertial confinement fusion. Physical Review E, 2021, 104, 045207.	2.1	2
5	Central Density and Low-Mode Perturbation Control of Inertial Confinement Fusion Dynamic-Shell Targets. Frontiers in Physics, 2021, 9, .	2.1	3
6	Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement fusion implosions. Physics of Plasmas, 2020, 27, 112713.	1.9	6
7	Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres. Physical Review Letters, 2020, 125, 065001.	7.8	9
8	Self-radiography of imploded shells on OMEGA based on additive-free multi-monochromatic continuum spectral analysis. Physics of Plasmas, 2020, 27, .	1.9	1
9	Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions. Physical Review Letters, 2019, 123, 065001.	7.8	10
10	Interpreting the electron temperature inferred from x-ray continuum emission for direct-drive inertial confinement fusion implosions on OMEGA. Physics of Plasmas, 2019, 26, .	1.9	12
11	Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 2019, 565, 581-586.	27.8	103
12	Plasma Density Measurements of the Inner Shell Release. Physical Review Letters, 2019, 123, 235001.	7.8	15
13	Direct-drive double-shell implosion: A platform for burning-plasma physics studies. Physical Review E, 2019, 100, 063204.	2.1	18
14	First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility. Physical Review Letters, 2018, 120, 085001.	7.8	65
15	Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA. Physical Review Letters, 2018, 120, 125001.	7.8	11
16	Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions. Physics of Plasmas, 2018, 25, 056314.	1.9	40
17	Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA. Physics of Plasmas, 2017, 24, .	1.9	21
18	Optical properties of highly compressed polystyrene: An ab initio study. Physical Review B, 2017, 96, .	3.2	22

Valeri Goncharov

#	Article	IF	CITATIONS
19	Indirect-drive ablative Richtmyer Meshkov node scaling. Journal of Physics: Conference Series, 2016, 717, 012034.	0.4	12
20	Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. Journal of Physics: Conference Series, 2016, 688, 012006.	0.4	4
21	First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications. Physics of Plasmas, 2016, 23, .	1.9	40
22	Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA. Physics of Plasmas, 2016, 23, .	1.9	69
23	First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. Physical Review E, 2015, 92, 043104.	2.1	68
24	Direct-drive inertial confinement fusion: A review. Physics of Plasmas, 2015, 22, .	1.9	521
25	X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores. Physics of Plasmas, 2015, 22, .	1.9	14
26	Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Physics of Plasmas, 2014, 21, .	1.9	139
27	First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. Physical Review E, 2014, 90, 033111.	2.1	53
28	Effects of local defect growth in direct-drive cryogenic implosions on OMEGA. Physics of Plasmas, 2013, 20, .	1.9	42
29	Laser-Beam Zooming to Mitigate Crossed-Beam Energy Losses in Direct-Drive Implosions. Physical Review Letters, 2013, 110, 145001.	7.8	31
30	Crossed-beam energy transfer in direct-drive implosions. Physics of Plasmas, 2012, 19, .	1.9	133
31	Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments. Physical Review Letters, 2012, 108, 125003.	7.8	67
32	A polar-drive–ignition design for the National Ignition Facility. Physics of Plasmas, 2012, 19, .	1.9	70
33	Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium. Physical Review Letters, 2011, 106, 195005.	7.8	54
34	Crossed-beam energy transfer in implosion experiments on OMEGA. Physics of Plasmas, 2010, 17, .	1.9	142
35	Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA. Physical Review Letters, 2010, 104, 165001.	7.8	111
36	Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA. Physics of Plasmas, 2010, 17, 102706.	1.9	43

Valeri Goncharov

#	Article	IF	CITATIONS
37	Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system. Physics of Plasmas, 2009, 16, 112706.	1.9	27
38	Performance of direct-drive cryogenic targets on OMEGA. Physics of Plasmas, 2008, 15, .	1.9	92
39	Validation of Thermal-Transport Modeling with Direct-Drive, Planar-Foil Acceleration Experiments on OMEGA. Physical Review Letters, 2008, 101, 055002.	7.8	42
40	One-megajoule, wetted-foam target-design performance for the National Ignition Facility. Physics of Plasmas, 2007, 14, 056308.	1.9	18
41	Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution. Physics of Plasmas, 2006, 13, 012702.	1.9	155
42	Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA. Physics of Plasmas, 2005, 12, 032702.	1.9	126
43	Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability. Physical Review E, 2005, 71, 046306.	2.1	19
44	Effect of electric fields on electron thermal transport in laser-produced plasmas. Physics of Plasmas, 2004, 11, 5680-5689.	1.9	4
45	Direct-drive cryogenic target implosion performance on OMEGA. Physics of Plasmas, 2004, 11, 2790-2797.	1.9	39
46	Polar direct drive on the National Ignition Facility. Physics of Plasmas, 2004, 11, 2763-2770.	1.9	139
47	Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket. Physics of Plasmas, 2003, 10, 1906-1918.	1.9	146
48	Deceleration phase of inertial confinement fusion implosions. Physics of Plasmas, 2002, 9, 2277-2286.	1.9	118
49	Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers. Physical Review Letters, 2002, 88, 134502.	7.8	298
50	Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules. Physics of Plasmas, 2001, 8, 5257-5267.	1.9	87
51	Analysis of a direct-drive ignition capsule designed for the National Ignition Facility. Physics of Plasmas, 2001, 8, 2315-2322.	1.9	152
52	Evolution of Shell Nonuniformities near Peak Compression of a Spherical Implosion. Physical Review Letters, 2001, 87, 155002.	7.8	32
53	A model of laser imprinting. Physics of Plasmas, 2000, 7, 2062-2068.	1.9	81
54	Theory of the Ablative Richtmyer-Meshkov Instability. Physical Review Letters, 1999, 82, 2091-2094.	7.8	139

#	Article	IF	CITATIONS
55	Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Physics of Plasmas, 1998, 5, 1446-1454.	1.9	297