Lingbo Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8488164/publications.pdf

Version: 2024-02-01

33	854	15	29
papers	citations	h-index	g-index
33	33 docs citations	33	1473
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation and Deactivation of Silicon Surface Passivation by Niobium Oxide Films. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	2
2	Additive engineering on spiro-OMeTAD hole transport material for CsPbI3 all-inorganic perovskite solar cells with improved performance and stability. Journal of Alloys and Compounds, 2022, 911, 164972.	5.5	5
3	Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6823-6832.	5.1	6
4	Antisolvent engineering on low-temperature processed CsPbI ₃ inorganic perovskites for improved performances of solar cells. Nanotechnology, 2021, 32, 185402.	2.6	11
5	Defect passivation in CH3NH3PbI3 films using alkali metal fluoride additives for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 315504.	2.8	10
6	Variational hysteresis and photoresponse behavior of MAPbX $\langle \text{sub} \rangle 3 \langle \text{sub} \rangle$ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	1.8	7
7	Sensitized electroluminescence from erbium doped silicon rich oxynitride light emitting devices. Journal of Luminescence, 2021, 235, 118009.	3.1	5
8	Simultaneous Passivation of the SnO ₂ /Perovskite Interface and Perovskite Absorber Layer in Perovskite Solar Cells Using KF Surface Treatment. ACS Applied Energy Materials, 2021, 4, 10921-10930.	5.1	35
9	Thiosemicarbazide-complexed SnO ₂ electron transport layers for high-efficiency MAPbI ₃ perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 6059-6065.	4.9	10
10	2D PEA ₂ Pbl ₄ –3D MAPbl ₃ Composite Perovskite Interfacial Layer for Highly Efficient and Stable Mixed-Ion Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13482-13491.	5.1	7
11	CsPbBr ₃ quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells. Nanotechnology, 2020, 31, 085401.	2.6	17
12	Enhanced emission from CH ₃ NH ₃ PbBr ₃ perovskite films by graphene quantum dot modification. Materials Research Express, 2020, 7, 016415.	1.6	4
13	Interface Defects Passivation and Conductivity Improvement in Planar Perovskite Solar Cells Using Na ₂ S-Doped Compact TiO ₂ Electron Transport Layers. ACS Applied Materials & amp; Interfaces, 2020, 12, 22853-22861.	8.0	59
14	<i>In-situ</i> growth of high-density ultrafine Ag ₃ PO ₄ nanoparticles on 3D TiO ₂ hierarchical spheres for enhanced photocatalytic degradation of organic pollutants. Nanotechnology, 2020, 31, 485702.	2.6	5
15	Towards green antisolvent for efficient CH3NH3PbBr3 perovskite light emitting diodes: A comparison of toluene, chlorobenzene, and ethyl acetate. Applied Physics Letters, 2019, 115, .	3.3	22
16	Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells. Journal of Alloys and Compounds, 2019, 776, 1002-1008.	5.5	29
17	Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes. Nanotechnology, 2019, 30, 105703.	2.6	10
18	Hybrid reduced graphene oxide/TiO2/graphitic carbon nitride composites with improved photocatalytic activity for organic pollutant degradation. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	32

#	Article	IF	Citations
19	Hierarchical spheres assembled from large ultrathin anatase TiO2 nanosheets for photocatalytic hydrogen evolution from water splitting. International Journal of Hydrogen Energy, 2018, 43, 13190-13199.	7.1	26
20	CH ₃ NH ₃ PbBr ₃ Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. ACS Applied Materials & Diterfaces, 2018, 10, 22320-22328.	8.0	32
21	Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Applied Physics Letters, 2017, 110, 233113.	3.3	22
22	Enhanced optoelectronic quality of perovskite films with excess CH ₃ NH ₃ I for high-efficiency solar cells in ambient air. Nanotechnology, 2017, 28, 205401.	2.6	18
23	Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework. Journal of Applied Physics, 2017, 122, .	2.5	7
24	Enhanced Electronic Properties of SnO ₂ <i>via</i> Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano, 2017, 11, 9176-9182.	14.6	302
25	Silver nanoparticles modified reduced graphene oxide wrapped Ag ₃ PO ₄ /TiO ₂ visible-light-active photocatalysts with superior performance. RSC Advances, 2016, 6, 43697-43706.	3.6	21
26	Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier. Journal of Materials Chemistry A, 2016, 4, 18509-18515.	10.3	62
27	Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochimica Acta, 2016, 196, 348-356.	5. 2	35
28	A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO 2 photoanodes. Electrochimica Acta, 2015, 173, 551-558.	5.2	19
29	Evolution of the sensitized Er3+ emission by silicon nanoclusters and luminescence centers in silicon-rich silica. Nanoscale Research Letters, 2014, 9, 456.	5.7	6
30	Temperature dependence of sensitized Er3+ luminescence in silicon-rich oxynitride films. Nanoscale Research Letters, 2014, 9, 489.	5.7	5
31	Sensitization of Er^3+ ions in silicon rich oxynitride films: effect of thermal treatments. Optics Express, 2014, 22, 13022.	3.4	9
32	Effects of excess silicon on the 1540 nm Er3+ luminescence in silicon rich oxynitride films. Applied Physics Letters, 2013, 103, .	3.3	13
33	Ultrathin Aluminum Oxide Films Induced by Rapid Thermal Annealing for Effective Silicon Surface Passivation. Physica Status Solidi - Rapid Research Letters, 0, , 2100267.	2.4	1