List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8487737/publications.pdf Version: 2024-02-01

		172207	168136
111	3,349	29	53
papers	citations	h-index	g-index
112	112	112	1458
all docs	docs citations	times ranked	citing authors

SUSANA TI CHUNC

#	Article	IF	CITATIONS
1	Spatial and temporal proximity of objects for maximal crowding. Vision Research, 2022, 194, 108012.	0.7	1
2	Training to improve temporal processing of letters benefits reading speed for people with central vision loss. Journal of Vision, 2021, 21, 14.	0.1	2
3	The generality of the critical spacing for crowded optotypes: From Bouma to the 21st century. Journal of Vision, 2021, 21, 18.	0.1	10
4	Sequential perceptual learning of letter identification and "uncrowding―in normal peripheral vision: Effects of task, training order, and cholinergic enhancement. Journal of Vision, 2020, 20, 24.	0.1	5
5	The Effect of Perceptual Learning on Face Recognition in Individuals with Central Vision Loss. , 2020, 61, 2.		3
6	Exploration of the functional consequences of fixational eye movements in the absence of a fovea. Journal of Vision, 2020, 20, 12.	0.1	7
7	Reading in the presence of macular disease: a miniâ€review. Ophthalmic and Physiological Optics, 2020, 40, 171-186.	1.0	22
8	Properties of the "Preferred Retinal Locus―in Response to Asymmetrical Progression of Simulated Central Scotomas. Journal of Vision, 2020, 20, 1341.	0.1	2
9	Orientation Information in Encoding Facial Expressions for People With Central Vision Loss. , 2019, 60, 1175.		0
10	Visual factors in reading. Vision Research, 2019, 161, 60-62.	0.7	3
11	Music-reading expertise modulates the visual span for English letters but not Chinese characters. Journal of Vision, 2019, 19, 10.	0.1	6
12	Feature contingencies when reading letter strings. Vision Research, 2019, 156, 84-95.	0.7	12
13	Authors' Response. Optometry and Vision Science, 2019, 96, 143-143.	0.6	Ο
14	Radial-tangential anisotropy of bisection thresholds in the normal periphery. Journal of Vision, 2019, 19, 67b.	0.1	0
15	Spatio-Temporal Dependencies of Letter Feature Processing. Journal of Vision, 2019, 19, 65b.	0.1	1
16	Pre-saccadic isotropization of crowding zones. Journal of Vision, 2019, 19, 65.	0.1	0
17	Training peripheral vision to read: Boosting the speed of letter processing. Vision Research, 2018, 152, 51-60.	0.7	11
18	Suboptimal eye movements for seeing fine details. Journal of Vision, 2018, 18, 8.	0.1	14

#	Article	IF	CITATIONS
19	Bolder print does not increase reading speed in people with central vision loss. Vision Research, 2018, 153, 98-104.	0.7	9
20	Orientation information in encoding facial expressions. Vision Research, 2018, 150, 29-37.	0.7	7
21	Visual Acuity Is Not the Best at the Preferred Retinal Locus in People with Macular Disease. Optometry and Vision Science, 2018, 95, 829-836.	0.6	24
22	Unifying the Quantification of Fixation Stability. Journal of Vision, 2018, 18, 1000.	0.1	1
23	Interaction between stimulus contrast and pre-saccadic crowding. Royal Society Open Science, 2017, 4, 160559.	1.1	7
24	Donepezil Does Not Enhance Perceptual Learning in Adults with Amblyopia: A Pilot Study. Frontiers in Neuroscience, 2017, 11, 448.	1.4	20
25	Crowding, visual awareness, and their respective neural loci. Journal of Vision, 2017, 17, 18.	0.1	8
26	Object crowding in age-related macular degeneration. Journal of Vision, 2017, 17, 33.	0.1	21
27	Enhancing discrimination of fine spatial details with fixational eye movements: Is there an extra-retinal component?. Journal of Vision, 2017, 17, 1157.	0.1	Ο
28	Combining the cholinesterase inhibitor donepezil with perceptual learning in adults with amblyopia. Journal of Vision, 2017, 17, 36.	0.1	0
29	Can (should) theories of crowding be unified?. Journal of Vision, 2016, 16, 10.	0.1	16
30	Comparing the Shape of Contrast Sensitivity Functions for Normal and Low Vision. , 2016, 57, 198.		61
31	Spatio-temporal properties of letter crowding. Journal of Vision, 2016, 16, 8.	0.1	6
32	The Role of External Features in Face Recognition with Central Vision Loss. Optometry and Vision Science, 2016, 93, 510-520.	0.6	14
33	Low Vision and Plasticity: Implications for Rehabilitation. Annual Review of Vision Science, 2016, 2, 321-343.	2.3	28
34	Crowding in the S-cone pathway. Vision Research, 2016, 122, 81-92.	0.7	7
35	Unmasking saccadic uncrowding. Vision Research, 2016, 127, 152-164.	0.7	7
36	Do Fixation Strategies Change with Target Size?. Journal of Vision, 2016, 16, 38.	0.1	0

SUSANA T L CHUNG

#	Article	IF	CITATIONS
37	The effect of stimulus contrast on pre-saccadic orientation discrimination. Journal of Vision, 2016, 16, 1040.	0.1	0
38	Do eye movements referenced to an extra-foveal retinal location in the absence of a functioning fovea?. Journal of Vision, 2016, 16, 1336.	0.1	0
39	A window into visual cortex development and recovery of vision: Introduction to the Vision Research special issue on Amblyopia. Vision Research, 2015, 114, 1-3.	0.7	10
40	Characteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity?. Vision Research, 2015, 114, 87-99.	0.7	88
41	Effects of Flankers Within the Crowding Zone. Journal of Vision, 2015, 15, 97.	0.1	0
42	Functional Consequences of Slow Drift Fixational Eye Movements in Patients with Central Vision Loss. Journal of Vision, 2015, 15, 72.	0.1	1
43	Changes across the psychometric function following perceptual learning of an RSVP reading task. Frontiers in Psychology, 2014, 5, 1434.	1.1	4
44	Characteristics of Fixational Eye Movements in People With Macular Disease. , 2014, 55, 5125.		59
45	Size or spacing: Which limits letter recognition in people with age-related macular degeneration?. Vision Research, 2014, 101, 167-176.	0.7	15
46	Visual Crowding in V1. Cerebral Cortex, 2014, 24, 3107-3115.	1.6	75
47	Sensory factors limiting horizontal and vertical visual span for letter recognition. Journal of Vision, 2014, 14, 3-3.	0.1	22
48	A kindler, gentler adaptive psychophysical procedure. Journal of Vision, 2014, 14, 390-390.	0.1	0
49	Fixation strategies revealed by the retinal imaging. Journal of Vision, 2014, 14, 114-114.	0.1	0
50	The two-dimensional shape of the crowding zone following macular lesions. Journal of Vision, 2014, 14, 768-768.	0.1	0
51	Spatial localisation in autism: evidence for differences in early cortical visual processing. Molecular Autism, 2013, 4, 4.	2.6	14
52	The effect of letter-stroke boldness on reading speed in central and peripheral vision. Vision Research, 2013, 84, 33-42.	0.7	31
53	Testing vision: From laboratory psychophysical tests to clinical evaluation. Vision Research, 2013, 90, 1.	0.7	3
54	Learning to identify crowded letters: Does the learning depend on the frequency of training?. Vision Research, 2013, 77, 41-50.	0.7	17

SUSANA T L CHUNG

#	Article	IF	CITATIONS
55	Cortical Reorganization after Long-Term Adaptation to Retinal Lesions in Humans. Journal of Neuroscience, 2013, 33, 18080-18086.	1.7	45
56	The Glenn A. Fry Award Lecture 2012. Optometry and Vision Science, 2013, 90, 520-529.	0.6	18
57	Factors Affecting Crowded Acuity. Optometry and Vision Science, 2013, 90, 628-638.	0.6	32
58	Acuity, contrast, eccentricity, and crowding. Journal of Vision, 2013, 13, 567-567.	0.1	1
59	Predicting reading performance for different fonts using physical and perceptual properties of letters. Journal of Vision, 2013, 13, 1300-1300.	0.1	Ο
60	Saccades affect crowding, but crowding does not affect saccades. Journal of Vision, 2013, 13, 580-580.	0.1	0
61	Coarse-to-fine spatial analysis for identifying multiple letters?. Journal of Vision, 2013, 13, 1302-1302.	0.1	Ο
62	How Do Flanking Objects Affect Reaching and Grasping Behavior in Participants with Macular Disorders?. , 2012, 53, 6687.		6
63	Theories of reading should predict reading speed. Behavioral and Brain Sciences, 2012, 35, 297-298.	0.4	2
64	Dependence of Reading Speed on Letter Spacing in Central Vision Loss. Optometry and Vision Science, 2012, 89, 1288-1298.	0.6	10
65	New Challenges in Low-Vision Research. Optometry and Vision Science, 2012, 89, 1244-1245.	0.6	7
66	The mechanism of word crowding. Vision Research, 2012, 52, 61-69.	0.7	11
67	Can reading-specific training stimuli improve the effect of perceptual learning on peripheral reading speed?. Vision Research, 2012, 66, 17-25.	0.7	16
68	A "fuller" report on mislocation errors in visual crowding. Journal of Vision, 2012, 12, 332-332.	0.1	1
69	Learning to Identify Near-Acuity Letters, either with or without Flankers, Results in Improved Letter Size and Spacing Limits in Adults with Amblyopia. PLoS ONE, 2012, 7, e35829.	1.1	37
70	Is Letter Recognition more "Ideal" than Face Recognition?. Journal of Vision, 2012, 12, 529-529.	0.1	0
71	Evaluation of a biologically-inspired neural network for letter recognition. Journal of Vision, 2012, 12, 537-537.	0.1	0
72	Contributions of target and flanker features to crowding. Journal of Vision, 2012, 12, 331-331.	0.1	0

#	Article	IF	CITATIONS
73	Crowding in individuals with age-related macular degeneration. Journal of Vision, 2012, 12, 336-336.	0.1	1
74	Improving Reading Speed for People with Central Vision Loss through Perceptual Learning. , 2011, 52, 1164.		113
75	Influence of Motion Smear on Visual Acuity in Simulated Infantile Nystagmus. Optometry and Vision Science, 2011, 88, 200-207.	0.6	22
76	The dependence of crowding on flanker complexity and target-flanker similarity. Journal of Vision, 2011, 11, 1-1.	0.1	90
77	Critical Orientation for Face Identification in Central Vision Loss. Optometry and Vision Science, 2011, 88, 724-732.	0.6	10
78	Temporal Dynamics of the Crowding Mechanism. Journal of Vision, 2011, 11, 1143-1143.	0.1	4
79	Orientation Information in Encoding Facial Expressions. Journal of Vision, 2011, 11, 604-604.	0.1	6
80	Can positional averaging explain crowded letter confusions?. Journal of Vision, 2011, 11, 1155-1155.	0.1	0
81	Target and flanker perception are related in crowded letter identification. Journal of Vision, 2011, 11, 1141-1141.	0.1	Ο
82	Orientation Bandwidth Requirement for Face Identification in Foveal and Peripheral Vision. Journal of Vision, 2011, 11, 31-31.	0.1	0
83	Development of a training protocol to improve reading performance in peripheral vision. Vision Research, 2010, 50, 36-45.	0.7	45
84	Detection and identification of crowded mirror-image letters in normal peripheral vision. Vision Research, 2010, 50, 337-345.	0.7	9
85	Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning?. Vision Research, 2010, 50, 860-869.	0.7	57
86	Ideal observer analysis of crowding and the reduction of crowding through learning. Journal of Vision, 2010, 10, 16-16.	0.1	43
87	Enhancing Visual Performance for People with Central Vision Loss. Optometry and Vision Science, 2010, 87, 276-284.	0.6	15
88	Letter crowding increases with flanker complexity. Journal of Vision, 2010, 10, 1346-1346.	0.1	0
89	Spatial-frequency and contrast properties of reading in central and peripheral vision. Journal of Vision, 2009, 9, 16-16.	0.1	27
90	Precision of position signals for letters. Vision Research, 2009, 49, 1948-1960.	0.7	40

#	Article	IF	CITATIONS
91	Contrast polarity differences reduce crowding but do not benefit reading performance in peripheral vision. Vision Research, 2009, 49, 2782-2789.	0.7	48
92	Learning to identify near-threshold luminance-defined and contrast-defined letters in observers with amblyopia. Vision Research, 2008, 48, 2739-2750.	0.7	37
93	Reading Speed Does Not Benefit from Increased Line Spacing in AMD Patients. Optometry and Vision Science, 2008, 85, 827-833.	0.6	29
94	Effect of letter spacing on visual span and reading speed. Journal of Vision, 2007, 7, 2.	0.1	109
95	The case for the visual span as a sensory bottleneck in reading. Journal of Vision, 2007, 7, 9.	0.1	124
96	Crowding between first- and second-order letter stimuli in normal foveal and peripheral vision. Journal of Vision, 2007, 7, 10.	0.1	35
97	Shift in spatial scale in identifying crowded letters. Vision Research, 2007, 47, 437-451.	0.7	16
98	The effect of dioptric blur on reading performance. Vision Research, 2007, 47, 1584-1594.	0.7	47
99	Learning to identify crowded letters: Does it improve reading speed?. Vision Research, 2007, 47, 3150-3159.	0.7	94
100	Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research, 2006, 46, 3853-3861.	0.7	65
101	Learning letter identification in peripheral vision. Vision Research, 2005, 45, 1399-1412.	0.7	51
102	Using visual noise to characterize amblyopic letter identification. Journal of Vision, 2004, 4, 6.	0.1	55
103	Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vision Research, 2004, 44, 695-709.	0.7	135
104	Reading Speed Benefits from Increased Vertical Word Spacing in Normal Peripheral Vision. Optometry and Vision Science, 2004, 81, 525-535.	0.6	58
105	Spatial-frequency properties of letter identification in amblyopia. Vision Research, 2002, 42, 1571-1581.	0.7	21
106	Spatial-frequency characteristics of letter identification in central and peripheral vision. Vision Research, 2002, 42, 2137-2152.	0.7	112
107	The effect of letter spacing on reading speed in central and peripheral vision. Investigative Ophthalmology and Visual Science, 2002, 43, 1270-6.	3.3	91
108	Psychophysics of reading. Vision Research, 2001, 41, 725-743.	0.7	355

#	Article	IF	CITATIONS
109	Spatial-frequency and contrast properties of crowding. Vision Research, 2001, 41, 1833-1850.	0.7	243
110	Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vision Research, 1998, 38, 2949-2962.	0.7	230
111	Effect of retinal image motion on visual acuity and contour interaction in congenital nystagmus. Vision Research, 1995, 35, 3071-3082.	0.7	52