José Roberto Meyer-Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8487335/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell Signaling through Protein Kinase C Oxidation and Activation. International Journal of Molecular Sciences, 2012, 13, 10697-10721.	1.8	186
2	3′-Nucleotidase/Nuclease Activity Allows Leishmania Parasites To Escape Killing by Neutrophil Extracellular Traps. Infection and Immunity, 2014, 82, 1732-1740.	1.0	99
3	Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie, 2013, 95, 1336-1343.	1.3	97
4	Mg-Dependent Ecto-ATPase Activity inLeishmania tropica. Archives of Biochemistry and Biophysics, 1997, 341, 40-46.	1.4	87
5	Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Experimental Parasitology, 2006, 114, 16-25.	0.5	77
6	Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes. Molecular and Biochemical Parasitology, 1999, 102, 1-12.	0.5	75
7	Ecto-protein tyrosine phosphatase activity in Trypanosoma cruzi infective stages. Molecular and Biochemical Parasitology, 1998, 92, 339-348.	0.5	62
8	Ecto-ATPases in protozoa parasites: looking for a function. Parasitology International, 2002, 51, 299-303.	0.6	62
9	Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite?host cell interaction. Parasitology Research, 2003, 91, 273-282.	0.6	62
10	Ectophosphatase activity in conidial forms of Fonsecaea pedrosoi is modulated by exogenous phosphate and influences fungal adhesion to mammalian cells. Microbiology (United Kingdom), 2004, 150, 3355-3362.	0.7	58
11	A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi. Parasitology Research, 2004, 93, 41-50.	0.6	58
12	NADPH Oxidase Biology and the Regulation of Tyrosine Kinase Receptor Signaling and Cancer Drug Cytotoxicity. International Journal of Molecular Sciences, 2013, 14, 3683-3704.	1.8	57
13	Ectonucleotide Diphosphohydrolase Activities in Entamoeba histolytica. Archives of Biochemistry and Biophysics, 2000, 375, 304-314.	1.4	55
14	Inorganic Phosphate as an Important Regulator of Phosphatases. Enzyme Research, 2011, 2011, 1-7.	1.8	55
15	Trypanosoma brucei brucei: Biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Experimental Parasitology, 2007, 115, 315-323.	0.5	48
16	Ecto-Phosphatase Activities on the Cell Surface of the Amastigote Forms of Trypanosoma cruzi. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 977-984.	0.6	43
17	Trypanosoma brucei: Ecto-Phosphatase Activity Present on the Surface of Intact Procyclic Forms. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 351-358.	0.6	42
18	Trypanosoma rangeli: Differential expression of cell surface polypeptides and ecto-phosphatase activity in short and long epimastigote forms. Experimental Parasitology, 2006, 112, 253-262.	0.5	42

#	Article	IF	CITATIONS
19	Leishmania amazonensis: Characterization of an ecto-phosphatase activity. Experimental Parasitology, 2006, 114, 334-340.	0.5	42
20	Characterization of an ecto-ATPase of Tritrichomonas foetus. Veterinary Parasitology, 2002, 103, 29-42.	0.7	41
21	<i>Leishmania amazonensis</i> impairs <scp>DC</scp> function by inhibiting <scp>CD</scp> 40 expression via <scp>A</scp> _{2B} adenosine receptor activation. European Journal of Immunology, 2012, 42, 1203-1215.	1.6	40
22	Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. BBA - Proteins and Proteomics, 2001, 1546, 164-170.	2.1	39
23	An ectophosphatase activity inCryptococcus neoformans. FEMS Yeast Research, 2006, 6, 1010-1017.	1.1	38
24	Effects of 4,4′-diisothyocyanatostilbene-2,2′-disulfonic acid on Trypanosoma cruzi proliferation and Ca2+ homeostasis. International Journal of Biochemistry and Cell Biology, 2000, 32, 519-527.	1.2	37
25	Trypanosoma rangeli: Characterization of a Mg-dependent ecto ATP-diphosphohydrolase activity. Experimental Parasitology, 2006, 112, 76-84.	0.5	36
26	Reversible inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid of the plasma membrane calcium-magnesium ATPase from kidney proximal tubules. Biochemistry, 1991, 30, 5700-5706.	1.2	35
27	Inorganic phosphate uptake in unicellular eukaryotes. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2123-2127.	1.1	35
28	An ectophosphatase activity inCandida parapsilosisinfluences the interaction of fungi with epithelial cells. FEMS Yeast Research, 2007, 7, 621-628.	1.1	33
29	Carbohydrate accumulation and utilization by oocytes of <i>Rhodnius prolixus</i> . Archives of Insect Biochemistry and Physiology, 2008, 67, 55-62.	0.6	33
30	Leishmania amazonensis: Characterization of an ecto-3′-nucleotidase activity and its possible role in virulence. Experimental Parasitology, 2011, 129, 277-283.	0.5	32
31	Colonization and genetic diversification processes of Leishmania infantum in the Americas. Communications Biology, 2021, 4, 139.	2.0	32
32	Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide. Free Radical Biology and Medicine, 2009, 47, 152-158.	1.3	31
33	Different secreted phosphatase activities in <i>Leishmania amazonensis</i> . FEMS Microbiology Letters, 2013, 340, 117-128.	0.7	31
34	Synthesis and mobilization of glycogen and trehalose in adult male <i>Rhodnius prolixus</i> . Archives of Insect Biochemistry and Physiology, 2009, 72, 1-15.	0.6	30
35	Trypanosoma rangeli: Differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Experimental Parasitology, 2010, 124, 386-393.	0.5	30
36	Ouabain-insensitive Na+-ATPase activity of Malpighian tubules from Rhodnius prolixus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 807-811.	0.7	28

#	Article	IF	CITATIONS
37	Differentiation of Fonsecaea pedrosoi mycelial forms into sclerotic cells is induced by platelet-activating factor. Research in Microbiology, 2003, 154, 689-695.	1.0	28
38	Trypanosoma rangeli: A possible role for ecto-phosphatase activity on cell proliferation. Experimental Parasitology, 2009, 122, 242-246.	0.5	28
39	Leishmania chagasi: An ecto-3′-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite–macrophage interaction. Experimental Parasitology, 2011, 127, 702-707.	0.5	28
40	GENE IDENTIFICATION AND ENZYMATIC PROPERTIES OF A MEMBRANEâ€BOUND TREHALASE FROM THE OVARY OF <scp>R</scp> HODNIUS PROLIXUS. Archives of Insect Biochemistry and Physiology, 2012, 81, 199-213.	0.6	28
41	An Ectonucleotide ATP-diphosphohydrolase Activity in Trichomonas vaginalis Stimulated by Galactose and Its Possible Role in Virulence. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 890-896.	0.6	27
42	Secreted phosphatase activity induced by dimethyl sulfoxide in Herpetomonas samuelpessoai. Archives of Biochemistry and Biophysics, 2002, 405, 191-198.	1.4	27
43	Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 291-298.	3.3	27
44	Iron modulates ecto-phosphohydrolase activities in pathogenic trichomonads. Parasitology International, 2006, 55, 285-290.	0.6	26
45	Entamoeba histolytica: An ecto-phosphatase activity regulated by oxidation–reduction reactions. Experimental Parasitology, 2007, 115, 352-358.	0.5	26
46	The Role of Heme and Reactive Oxygen Species in Proliferation and Survival ofTrypanosoma cruzi. Journal of Parasitology Research, 2011, 2011, 1-8.	0.5	26
47	Developmental changes in the response of larval Manduca sexta fat body glycogen phosphorylase to starvation, stress and octopamine. Insect Biochemistry and Molecular Biology, 2000, 30, 415-422.	1.2	25
48	Leishmania amazonensis: Characterization of an ouabain-insensitive Na+-ATPase activity. Experimental Parasitology, 2008, 118, 165-171.	0.5	24
49	Leishmania amazonensis: Effects of heat shock on ecto-ATPase activity. Experimental Parasitology, 2008, 119, 135-143.	0.5	24
50	A Mg2+-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate. Acta Tropica, 2008, 107, 153-158.	0.9	24
51	Giardia lamblia: Characterization of ecto-phosphatase activities. Experimental Parasitology, 2009, 121, 15-21.	0.5	24
52	Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Archives of Microbiology, 2007, 188, 159-166.	1.0	23
53	Immune and inflammatory responses to Leishmania amazonensis isolated from different clinical forms of human leishmaniasis in CBA mice. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 23-31.	0.8	23
54	Phosphatase activity characterization on the surface of intact bloodstream forms ofTrypanosoma brucei. FEMS Microbiology Letters, 2003, 220, 197-206.	0.7	22

#	Article	IF	CITATIONS
55	Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing. Journal of Bioenergetics and Biomembranes, 2011, 43, 89-92.	1.0	22
56	Adenosine and Immune Imbalance in Visceral Leishmaniasis: The Possible Role of Ectonucleotidases. Journal of Tropical Medicine, 2012, 2012, 1-6.	0.6	22
57	Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Frontiers in Immunology, 2021, 12, 651740.	2.2	22
58	Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages. Immunobiology, 2015, 220, 589-596.	0.8	21
59	Inhibition of Ecto-Phosphatase Activity in Conidia Reduces Adhesion and Virulence of Metarhizium anisopliae on the Host Insect Dysdercus peruvianus. Current Microbiology, 2013, 66, 467-474.	1.0	20
60	Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma Parasites. Sub-Cellular Biochemistry, 2014, 74, 217-252.	1.0	19
61	Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion. Acta Tropica, 2014, 130, 140-147.	0.9	19
62	Biochemical Properties and Possible Roles of Ectophosphatase Activities in Fungi. International Journal of Molecular Sciences, 2014, 15, 2289-2304.	1.8	18
63	H+-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2180-2188.	1.8	18
64	An Ecto-ATPase Activity Present in Leishmania tropica Stimulated by Dextran Sulfate. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 820-825.	0.6	17
65	Giardia lamblia: Biochemical characterization of an ecto-ATPase activity. Experimental Parasitology, 2008, 119, 279-284.	0.5	17
66	Possible Roles of Ectophosphatases in Host-Parasite Interactions. Journal of Parasitology Research, 2011, 2011, 1-7.	0.5	17
67	Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite. International Journal for Parasitology, 2012, 42, 819-827.	1.3	17
68	Identification of uncoupling protein 4 from the blood-sucking insect Rhodnius prolixus and its possible role on protection against oxidative stress. Insect Biochemistry and Molecular Biology, 2014, 50, 24-33.	1.2	17
69	Fat body fructose-2,6-bisphosphate content and phosphorylase activity correlate with changes in hemolymph glucose concentration during fasting and re-feeding in larval Manduca sexta. Insect Biochemistry and Molecular Biology, 2001, 31, 165-170.	1.2	16
70	Ecto-phosphatase Activity on the Cell Surface of Crithidia deanei. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 500-505.	0.6	16
71	Biochemical characterization of an ecto-ATP diphosphohydrolase activity in Candida parapsilosis and its possible role in adenosine acquisition and pathogenesis. FEMS Yeast Research, 2010, 10, 735-746.	1.1	16
72	The GTPase TcRjl of the human pathogen Trypanosoma cruzi is involved in the cell growth and differentiation. Biochemical and Biophysical Research Communications, 2012, 419, 38-42.	1.0	16

JOSé ROBERTO

#	Article	IF	CITATIONS
73	Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231. PLoS ONE, 2018, 13, e0191270.	1.1	16
74	Ectonucleotide Diphosphohydrolase Activities in Hemocytes of Larval Manduca sexta. Archives of Biochemistry and Biophysics, 2000, 382, 152-159.	1.4	15
75	Platelet-Activating Factor Modulates a Secreted Phosphatase Activity of the Trypanosomatid Parasite Herpetomonas muscarum muscarum. Current Microbiology, 2001, 43, 288-292.	1.0	15
76	Surface phosphatase in <i>Rhinocladiella aquaspersa</i> : biochemical properties and its involvement with adhesion. Medical Mycology, 2012, 50, 570-578.	0.3	15
77	NTPDase activities: possible roles on <i>Leishmania spp</i> infectivity and virulence. Cell Biology International, 2018, 42, 670-682.	1.4	15
78	TcRho1 of Trypanosoma cruzi: role in metacyclogenesis and cellular localization. Biochemical and Biophysical Research Communications, 2004, 323, 1009-1016.	1.0	14
79	Characterization of an ecto-ATPase activity in. FEMS Yeast Research, 2005, 5, 899-907.	1.1	14
80	Characterization of an ecto-ATPase activity in Fonsecaea pedrosoi. Archives of Microbiology, 2006, 185, 355-362.	1.0	14
81	Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity. Experimental Parasitology, 2007, 116, 419-426.	0.5	14
82	Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis Multiplication In Vitro. PLoS ONE, 2015, 10, e0124183.	1.1	14
83	Uncoupling by Trehalose of Ca ²⁺ Transport and ATP Hydrolysis by the Plasma Membrane (Ca ²⁺ +Mg ²⁺) ATPase of Kidney Tubules. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1994, 49, 141-146.	0.6	13
84	A metallo phosphatase activity present on the surface of Trypanosoma brucei procyclic forms. Veterinary Parasitology, 2003, 118, 19-28.	0.7	13
85	Biochemical properties of Candida parapsilosis ecto-5′-nucleotidase and the possible role of adenosine in macrophage interaction. FEMS Microbiology Letters, 2011, 317, 34-42.	0.7	13
86	Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa. Experimental Parasitology, 2014, 146, 25-33.	0.5	13
87	Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vascular Pharmacology, 2016, 82, 66-72.	1.0	13
88	H+-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. Journal of Bioenergetics and Biomembranes, 2017, 49, 183-194.	1.0	13
89	Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genetics and Biology, 2018, 115, 20-32.	0.9	13
90	Ecto-Nucleoside Triphosphate Diphosphohydrolase Activities in Trypanosomatids: Possible Roles in Infection, Virulence and Purine Recycling. The Open Parasitology Journal, 2010, 4, 116-119.	1.7	13

#	Article	IF	CITATIONS
91	3′nucleotidase/nuclease in protozoan parasites: Molecular and biochemical properties and physiological roles. Experimental Parasitology, 2017, 179, 1-6.	0.5	12
92	Blood meal drives de novo lipogenesis in the fat body of Rhodnius prolixus. Insect Biochemistry and Molecular Biology, 2021, 133, 103511.	1.2	12
93	A Contribution of the Mitochondrial Adenosinetriphosphatase Inhibitor Protein to the Thermal Stability of the F0F1-ATPase Complex. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 459-465.	0.6	11
94	Tritrichomonas foetus: Characterisation of ecto-phosphatase activities in the endoflagelar form and their possible participation on the parasite's transformation and cytotoxicity. Experimental Parasitology, 2014, 142, 67-82.	0.5	11
95	Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps. Molecular and Biochemical Parasitology, 2019, 229, 6-14.	0.5	11
96	The Functioning of Na+-ATPases from Protozoan Parasites: Are These Pumps Targets for Antiparasitic Drugs?. Cells, 2020, 9, 2225.	1.8	11
97	The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. International Journal of Molecular Sciences, 2020, 21, 9298.	1.8	11
98	Trypanosoma brucei brucei: Effects of ferrous iron and heme on ecto-nucleoside triphosphate diphosphohydrolase activity. Experimental Parasitology, 2009, 121, 137-143.	0.5	10
99	Trypanosoma cruzi: Effects of heat shock on ecto-ATPase activity. Experimental Parasitology, 2013, 133, 434-441.	0.5	10
100	Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis. PLoS ONE, 2015, 10, e0129604.	1.1	10
101	Extracellular Inorganic Phosphate-Induced Release of Reactive Oxygen Species: Roles in Physiological Processes and Disease Development. International Journal of Molecular Sciences, 2021, 22, 7768.	1.8	10
102	Effects of Naturally Occurring Polyols and Urea on Mitochondrial F0F1ATPase. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 392-398.	0.6	9
103	Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: Modulation by carbohydrates and Trypanosoma rangeli. Acta Tropica, 2008, 106, 137-142.	0.9	9
104	Rhodnius prolixus: Modulation of antioxidant defenses by Trypanosoma rangeli. Experimental Parasitology, 2014, 145, 118-124.	0.5	9
105	Candida Extracellular Nucleotide Metabolism Promotes Neutrophils Extracellular Traps Escape. Frontiers in Cellular and Infection Microbiology, 2021, 11, 678568.	1.8	9
106	Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Frontiers in Cellular and Infection Microbiology, 2021, 11, 633146.	1.8	8
107	Giardia duodenalis: Biochemical characterization of an ecto-5′-nucleotidase activity. Experimental Parasitology, 2011, 127, 66-71.	0.5	7
108	Leishmania amazonensis: Characterization of an ecto-pyrophosphatase activity. Experimental Parasitology, 2014, 137, 8-13.	0.5	7

#	Article	IF	CITATIONS
109	The biochemical characterization of two phosphate transport systems in Phytomonas serpens. Experimental Parasitology, 2017, 173, 1-8.	0.5	7
110	Tartrate-resistant phosphatase type 5 inÂTrypanosoma cruziÂis important for resistance to oxidative stress promoted by hydrogen peroxide. Experimental Parasitology, 2019, 205, 107748.	0.5	7
111	Acanthamoeba castellanii phosphate transporter (AcPHS) is important to maintain inorganic phosphate influx and is related to trophozoite metabolic processes. Journal of Bioenergetics and Biomembranes, 2020, 52, 93-102.	1.0	7
112	Leishmania amazonensis: Heme stimulates (Na++ K+)ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways. Experimental Parasitology, 2010, 124, 436-441.	0.5	6
113	Trypanosoma rangeli: An alkaline ecto-phosphatase activity is involved with survival and growth of the parasite. Experimental Parasitology, 2013, 135, 459-465.	0.5	6
114	Inhibitory effects promoted by 5′-nucleotides on the ecto-3′-nucleotidase activity of Leishmania amazonensis. Experimental Parasitology, 2016, 169, 111-118.	0.5	6
115	Leishmania amazonensis inorganic phosphate transporter system is increased in the proliferative forms. Molecular and Biochemical Parasitology, 2019, 233, 111212.	0.5	6
116	Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Frontiers in Cellular and Infection Microbiology, 2020, 10, 39.	1.8	6
117	Resveratrol is an inhibitor of sodiumâ€dependent inorganic phosphate transport in tripleâ€negative MDAâ€MBâ€231 breast cancer cells. Cell Biology International, 2021, 45, 1768-1775.	1.4	6
118	Carbohydrates Protect Mitochondrial F ₀ F ₁ -ATPase Complex against Thermal Inactivation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 594-599.	0.6	5
119	Characterization of an ecto-phosphatase activity in malpighian tubules of hematophagous bugRhodnius prolixus. Archives of Insect Biochemistry and Physiology, 2004, 57, 40-49.	0.6	5
120	Leishmania amazonensis: Inhibition of 3′-nucleotidase activity by Cu2+ ions. Experimental Parasitology, 2012, 131, 63-68.	0.5	5
121	Characterization of extracellular nucleotide metabolism in <i>Candida albicans</i> . FEMS Microbiology Letters, 2016, 363, fnv212.	0.7	5
122	Ectophosphatase activity in the tripleâ€negative breast cancer cell line MDAâ€MBâ€⊋31. Cell Biology International, 2021, 45, 411-421.	1.4	5
123	Hydrogen Peroxide Generation as an Underlying Response to High Extracellular Inorganic Phosphate (Pi) in Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 10096.	1.8	5
124	3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Experimental Parasitology, 2021, 229, 108154.	0.5	5
125	Stage-Specific Class I Nucleases of Leishmania Play Important Roles in Parasite Infection and Survival. Frontiers in Cellular and Infection Microbiology, 2021, 11, 769933.	1.8	4
126	Ectophosphatase activity in the early-diverging fungus Blastocladiella emersonii: Biochemical characterization and possible role on cell differentiation. Fungal Genetics and Biology, 2018, 117, 43-53.	0.9	3

JOSé ROBERTO

#	Article	IF	CITATIONS
127	A ferric reductase of Trypanosoma cruzi (TcFR) is involved in iron metabolism in the parasite. Experimental Parasitology, 2020, 217, 107962.	0.5	3
128	Differential regulation of E-NTPdases during Leishmania amazonensis lifecycle and effect of their overexpression on parasite infectivity and virulence. Parasitology International, 2021, 85, 102423.	0.6	3
129	Identification and Characterization of an Ecto-Pyrophosphatase Activity in Intact Epimastigotes of Trypanosoma rangeli. PLoS ONE, 2014, 9, e106852.	1.1	3
130	Characterization of an ecto-5′-nucleotidase activity present on the cell surface of Tritrichomonas foetus. Veterinary Parasitology, 2011, 179, 50-56.	0.7	2
131	E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Frontiers in Cellular and Infection Microbiology, 2021, 11, 769922.	1.8	2
132	An Iron Transporter Is Involved in Iron Homeostasis, Energy Metabolism, Oxidative Stress, and Metacyclogenesis in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2021, 11, 789401.	1.8	1
133	Inorganic phosphate transporter in Giardia duodenalis and its possible role in ATP synthesis. Molecular and Biochemical Parasitology, 2022, 251, 111504.	0.5	1
134	Ecto-nucleotidase activities in the fat body ofRhodnius prolixus. Archives of Insect Biochemistry and Physiology, 2006, 61, 1-9.	0.6	0