Niveen Khashab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8487222/publications.pdf

Version: 2024-02-01

164 papers 9,685 citations

41323 49 h-index 93 g-index

176 all docs

176 docs citations

176 times ranked

12443 citing authors

#	Article	IF	CITATIONS
1	Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 2017, 29, 1604634.	11.1	565
2	Light-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 2009, 131, 1686-1688.	6.6	482
3	Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1, 16.	2.8	481
4	Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.	23.0	466
5	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
6	Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2018, 140, 143-146.	6.6	380
7	pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 2009, 131, 12912-12914.	6.6	323
8	Dual-Controlled Nanoparticles Exhibiting AND Logic. Journal of the American Chemical Society, 2009, 131, 11344-11346.	6.6	302
9	Radically enhanced molecular recognition. Nature Chemistry, 2010, 2, 42-49.	6.6	280
10	Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 2015, 7, 20318-20334.	2.8	232
11	Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chemical Society Reviews, 2019, 48, 2682-2697.	18.7	205
12	Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1715-1720.	6.6	162
13	Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie - International Edition, 2015, 54, 15809-15812.	7.2	161
14	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	4.8	149
15	Hollow Au@Pd and Au@Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions. Journal of Materials Chemistry, 2012, 22, 25003.	6.7	140
16	Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery. Journal of the American Chemical Society, 2018, 140, 4666-4677.	6.6	138
17	Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. Nanoscale, 2016, 8, 19945-19972.	2.8	136
18	"Light-on―Sensing of Antioxidants Using Gold Nanoclusters. Analytical Chemistry, 2014, 86, 4989-4994.	3.2	121

#	Article	IF	CITATIONS
19	Towards applications of bioentities@MOFs in biomedicine. Coordination Chemistry Reviews, 2021, 429, 213651.	9.5	121
20	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	5.8	112
21	Polyoxometalate–Cyclodextrin Metal–Organic Frameworks: From Tunable Structure to Customized Storage Functionality. Journal of the American Chemical Society, 2019, 141, 1847-1851.	6.6	110
22	Snap-Top Nanocarriers. Organic Letters, 2010, 12, 3304-3307.	2.4	108
23	Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Scientific Reports, 2018, 8, 8524.	1.6	101
24	Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nature Communications, 2020, 11, 5882.	5.8	101
25	Hybrid Iron Oxide–Graphene Oxide–Polysaccharides Microcapsule: A Micro-Matryoshka for On-Demand Drug Release and Antitumor Therapy In Vivo. ACS Applied Materials & Interfaces, 2016, 8, 6859-6868.	4.0	100
26	Redox―and pH ontrolled Mechanized Nanoparticles. European Journal of Organic Chemistry, 2009, 2009, 1669-1673.	1.2	91
27	Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network. Journal of the American Chemical Society, 2018, 140, 2777-2780.	6.6	91
28	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	1.7	81
29	Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery. Journal of Controlled Release, 2017, 259, 187-194.	4.8	81
30	Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 5925-5934.	2.9	79
31	Trianglamine-Based Supramolecular Organic Framework with Permanent Intrinsic Porosity and Tunable Selectivity. Journal of the American Chemical Society, 2018, 140, 14571-14575.	6.6	78
32	Removal of Organic Micropollutants from Water by Macrocycleâ€Containing Covalent Polymer Networks. Angewandte Chemie - International Edition, 2020, 59, 23402-23412.	7.2	78
33	A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective <i>p</i> å€Xylene Separation. Angewandte Chemie - International Edition, 2020, 59, 21367-21371.	7.2	76
34	Lewis Acid Guests in a {P ₈ W ₄₈ } Archetypal Polyoxotungstate Host: Enhanced Proton Conductivity via Metalâ€⊙xo Cluster within Cluster Assemblies. Angewandte Chemie - International Edition, 2018, 57, 13046-13051.	7.2	73
35	Azobenzene-Bridged Expanded "Texas-sized―Box: A Dual-Responsive Receptor for Aryl Dianion Encapsulation. Journal of the American Chemical Society, 2019, 141, 6468-6472.	6.6	72
36	Calix[4]pyrroleâ€Crosslinked Porous Polymeric Networks for the Removal of Micropollutants from Water. Angewandte Chemie - International Edition, 2021, 60, 7188-7196.	7.2	69

#	Article	IF	CITATIONS
37	Colorimetric Peroxidase Mimetic Assay for Uranyl Detection in Sea Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4589-4594.	4.0	67
38	Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale, 2015, 7, 15046-15050.	2.8	67
39	Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations. Accounts of Chemical Research, 2021, 54, 155-168.	7.6	66
40	Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system. Npj Flexible Electronics, 2017, 1 , .	5.1	65
41	pH-Responsive mechanised nanoparticles gated by semirotaxanes. Chemical Communications, 2009, , 5371.	2.2	61
42	Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1737-1745.	4.0	61
43	Electrostatic Assembly/Disassembly of Nanoscaled Colloidosomes for Lightâ€∓riggered Cargo Release. Angewandte Chemie - International Edition, 2015, 54, 6804-6808.	7.2	60
44	Water-dispersable hybrid Au–Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki–Miyaura and Heck reactions. Journal of Materials Chemistry, 2012, 22, 15953.	6.7	59
45	Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Science Advances, 2021, 7, .	4.7	58
46	Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 170-180.	0.9	57
47	Adsorptive Molecular Sieving of Styrene over Ethylbenzene by Trianglimine Crystals. Journal of the American Chemical Society, 2021, 143, 4090-4094.	6.6	57
48	Shape-Induced Selective Separation of Ortho-substituted Benzene Isomers Enabled by Cucurbit[7]uril Host Macrocycles. CheM, 2020, 6, 1082-1096.	5.8	53
49	Tunable and Linker Free Nanogaps in Core–Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. ACS Applied Materials & Interfaces, 2017, 9, 37597-37605.	4.0	52
50	Pillar[5]areneâ€Stabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Host–Guest Interactions. Angewandte Chemie - International Edition, 2019, 58, 15665-15670.	7.2	52
51	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	7.8	50
52	Pillararene-based supramolecular systems for theranostics and bioapplications. Science China Chemistry, 2021, 64, 688-700.	4.2	50
53	Redox-driven switching in pseudorotaxanes. New Journal of Chemistry, 2009, 33, 254.	1.4	49
54	Probing structural changes of self assembled i-motif DNA. Chemical Communications, 2015, 51, 3747-3749.	2.2	49

#	Article	IF	Citations
55	A tristable [2]pseudo[2]rotaxane. Chemical Communications, 2010, 46, 871.	2.2	46
56	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	1.7	46
57	Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry and Cell Biology, 2016, 75, 148-161.	1.2	46
58	Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chemical Science, 2021, 12, 5315-5318.	3.7	45
59	A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors. Soft Matter, 2016, 12, 2842-2845.	1.2	44
60	Photoresponsive Bridged Silsesquioxane Nanoparticles with Tunable Morphology for Light-Triggered Plasmid DNA Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24993-24997.	4.0	42
61	Microwave-Assisted Preparations of Amidrazones and Amidoximes. Journal of Organic Chemistry, 2006, 71, 9051-9056.	1.7	38
62	Characterization of internal structure of hydrated agar and gelatin matrices by cryoâ€ 5 EM. Electrophoresis, 2013, 34, 405-408.	1.3	38
63	Water compatible supramolecular polymers: recent progress. Chemical Society Reviews, 2021, 50, 10025-10043.	18.7	38
64	Applications of Nanodiamonds in Drug Delivery and Catalysis. Journal of Nanoscience and Nanotechnology, 2014, 14, 332-343.	0.9	37
65	Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications. Scientific Reports, 2016, 6, 28539.	1.6	37
66	Multifunctional Pillar[<i>n</i>)]arene-Based Smart Nanomaterials. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 31337-31354.	4.0	37
67	Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New Journal of Chemistry, 2012, 36, 1479.	1.4	34
68	Kinetics and mechanism of ionic intercalation/de-intercalation during the formation of \hat{l} ±-cobalt hydroxide and its polymorphic transition to \hat{l} 2-cobalt hydroxide: reactionâ \in "diffusion framework. Journal of Materials Chemistry, 2012, 22, 16361.	6.7	34
69	Cobalt ferrite supported on reduced graphene oxide as a <i>T</i> ₂ contrast agent for magnetic resonance imaging. RSC Advances, 2019, 9, 6299-6309.	1.7	34
70	Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nature Communications, 2016, 7, 12147.	5.8	32
71	Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrinâ€Ethyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles. ChemNanoMat, 2018, 4, 46-51.	1.5	31
72	Cadmium–Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO ₂ Reduction. ChemSusChem, 2016, 9, 800-805.	3.6	30

#	Article	IF	CITATIONS
73	Tuning the porosity of triangular supramolecular adsorbents for superior haloalkane isomer separations. Chemical Science, 2021, 12, 12286-12291.	3.7	30
74	Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Advances, 2012, 2, 12909.	1.7	29
75	Hollow ZIF-8 Nanoworms from Block Copolymer Templates. Scientific Reports, 2015, 5, 15275.	1.6	29
76	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	6.6	28
77	Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of \hat{I}^2 -amyloid aggregates. Chemical Communications, 2017, 53, 2102-2105.	2.2	27
78	Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. Nanoscale, 2013, 5, 4321.	2.8	26
79	Coordination-based self-assembled capsules (SACs) for protein, CRISPR–Cas9, DNA and RNA delivery. Chemical Science, 2021, 12, 2329-2344.	3.7	26
80	Improving pore exposure in mesoporous silica films for mechanized control of the pores. Microporous and Mesoporous Materials, 2010, 132, 435-441.	2.2	25
81	Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcareâ€Associated Infections. Advanced Healthcare Materials, 2017, 6, 1601135.	3.9	25
82	Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem, 2017, 82, 631-637.	1.3	24
83	Surface Modification of Multiwalled Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl methacrylate) Composites. ACS Applied Materials & Diterfaces, 2015, 7, 12903-12913.	4.0	22
84	Trianglamine hydrochloride crystals for a highly sensitive and selective humidity sensor. Sensors and Actuators B: Chemical, 2019, 294, 40-47.	4.0	22
85	Synthetic Vehicles for Encapsulation and Delivery of CRISPR/Cas9 Gene Editing Machinery. Advanced Therapeutics, 2019, 2, 1800085.	1.6	22
86	<i>In situ</i> assembled ZIF superstructures <i>via</i> an emulsion-free soft-templating approach. Chemical Science, 2020, 11, 11280-11284.	3.7	22
87	Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine, 2017, 12, 1421-1433.	1.7	21
88	Optimizing Host–Guest Selectivity for Ethylbenzene Capture Toward Superior Styrene Purification. Chemistry of Materials, 2022, 34, 197-202.	3.2	20
89	Polyetherimide/Bucky Gels Nanocomposites with Superior Conductivity and Thermal Stability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7478-7484.	4.0	19
90	Compositing Polyetherimide with Polyfluorene Wrapped Carbon Nanotubes for Enhanced Interfacial Interaction and Conductivity. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9013-9022.	4.0	19

#	Article	IF	Citations
91	"Twoâ€Step―Raman Imaging Technique To Guide Chemoâ€Photothermal Cancer Therapy. Chemistry - A European Journal, 2015, 21, 17274-17281.	1.7	19
92	Customized mesoporous metal organic frameworks engender stable enzymatic nanoreactors. Chemical Communications, 2019, 55, 620-623.	2.2	19
93	Molecular recognition and adsorptive separation of <i>m</i> -xylene by trianglimine crystals. Chemical Communications, 2021, 57, 9124-9127.	2.2	19
94	Lowâ∈Magnetization Magnetic Microcapsules: A Synergistic Theranostic Platform for Remote Cancer Cells Therapy and Imaging. Particle and Particle Systems Characterization, 2014, 31, 985-993.	1.2	18
95	Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids. Journal of the American Chemical Society, 2017, 139, 10232-10238.	6.6	18
96	From Capsule to Helix: Guest-Induced Superstructures of Chiral Macrocycle Crystals. Journal of the American Chemical Society, 2020, 142, 15823-15829.	6.6	18
97	Pillar[3]trianglamines: deeper cavity triangular macrocycles for selective hexene isomer separation. Chemical Science, 2022, 13, 3244-3248.	3.7	18
98	Synthesis of Mono- and Symmetrical Di-N-hydroxy- and N-Aminoguanidines. Journal of Organic Chemistry, 2006, 71, 6753-6758.	1.7	17
99	Zippered release from polymer-gated carbon nanotubes. Journal of Materials Chemistry, 2012, 22, 11503.	6.7	17
100	Removal of Anions from Aqueous Media by Means of a Thermoresponsive Calix[4]pyrrole Amphiphilic Polymer. Chemistry - A European Journal, 2018, 24, 15791-15795.	1.7	17
101	AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules, 2021, 22, 5243-5255.	2.6	17
102	pH-triggered micellar membrane for controlled release microchips. Polymer Chemistry, 2011, 2, 2543.	1.9	16
103	Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties. RSC Advances, 2012, 2, 3621.	1.7	16
104	Magnetotactic bacterial cages as safe and smart gene delivery vehicles. OpenNano, 2016, 1, 36-45.	1.8	16
105	Self-Immolative Fluorescent and Raman Probe for Real-Time Imaging and Quantification of \hat{I}^3 -Glutamyl Transpeptidase in Living Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27529-27535.	4.0	16
106	Xylene isomer separations by intrinsically porous molecular materials. Cell Reports Physical Science, 2021, 2, 100470.	2.8	16
107	Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes. Biomicrofluidics, 2015, 9, 054113.	1.2	15
108	Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes. Journal of Carbon Research, 2015, 1, 58-76.	1.4	15

#	Article	IF	CITATIONS
109	Semi-automated quantification of living cells with internalized nanostructures. Journal of Nanobiotechnology, 2016, 14, 4.	4.2	15
110	A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective p â€Xylene Separation. Angewandte Chemie, 2020, 132, 21551-21555.	1.6	15
111	Microwaveâ€Assisted Solidâ€Phase Peptide Synthesis Utilizing <i>N</i> â€Fmocâ€Protected (<i>α</i> â€aminoacyl)benzotriazoles. Chemical Biology and Drug Design, 2007, 70, 465-468.	1.5	14
112	Engineering the Internal Structure of Magnetic Silica Nanoparticles by Thermal Control. Particle and Particle Systems Characterization, 2015, 32, 307-312.	1.2	14
113	Lewis Acid Guests in a {P 8 W 48 } Archetypal Polyoxotungstate Host: Enhanced Proton Conductivity via Metalâ€Oxo Cluster within Cluster Assemblies. Angewandte Chemie, 2018, 130, 13230-13235.	1.6	14
114	Impact of Poreâ€"Walls Ligand Assembly on the Biodegradation of Mesoporous Organosilica Nanoparticles for Controlled Drug Delivery. ACS Omega, 2018, 3, 5195-5201.	1.6	14
115	Separation and Detection of <i>meta</i> ―and <i>ortho</i> ―bubstituted Benzene Isomers by Using a Water―soluble Pillar[5]arene. ChemPlusChem, 2020, 85, 1244-1248.	1.3	14
116	<i>N</i> à€Fmocâ€Protected(<i>α</i> â€Dipeptidoyl)Benzotriazoles for Efficient Solidâ€Phase Peptide Synthesis by Segment Condensation. Chemical Biology and Drug Design, 2008, 72, 182-188.	1.5	13
117	Stimuli responsive nanomaterials for controlled release applications. Nanotechnology Reviews, 2012, 1, 493-513.	2.6	13
118	Dynamics and Mechanism of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of the CdAl Layered Double Hydroxide to the Brucite-like Cadmium Hydroxide. Crystal Growth and Design, 2016, 16, 4327-4335.	1.4	13
119	Compatibility analysis of 3D printer resin for biological applications. Micro and Nano Letters, 2016, 11, 654-659.	0.6	13
120	Calix[4]pyrroleâ€Crosslinked Porous Polymeric Networks for the Removal of Micropollutants from Water. Angewandte Chemie, 2021, 133, 7264-7272.	1.6	13
121	Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions. Physical Chemistry Chemical Physics, 2015, 17, 18825-18833.	1.3	12
122	Supramolecular Selfâ€Assembly of Histidineâ€Cappedâ€Dialkoxyâ€Anthracene: A Visibleâ€Lightâ€Triggered Platfo for Facile siRNA Delivery. Chemistry - A European Journal, 2016, 22, 13789-13793.	orm 1.7	12
123	Non-Resonant Large Format Surface Enhanced Raman Scattering Substrates for Selective Detection and Quantification of Xylene Isomers. Chemistry of Materials, 2017, 29, 1994-1998.	3.2	12
124	Cyclodextrin-functionalized asymmetric block copolymer films as high-capacity reservoir for drug delivery. Journal of Membrane Science, 2019, 584, 1-8.	4.1	12
125	Preparations of diversely substituted thiosemicarbazides and N-hydroxythioureas. Arkivoc, 2006, 2006, 226-236.	0.3	12
126	"Nail―and "comb―effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes. Biomaterials Science, 2014, 2, 476.	2.6	11

#	Article	IF	Citations
127	Removal of Organic Micropollutants from Water by Macrocycleâ€Containing Covalent Polymer Networks. Angewandte Chemie, 2020, 132, 23608-23618.	1.6	11
128	DNA-Mimicking Metal–Organic Frameworks with Accessible Adenine Faces for Complementary Base Pairing. Jacs Au, 2022, 2, 623-630.	3.6	11
129	Anion extractants constructed by macrocycle-based anion recognition. Journal of Materials Chemistry A, 2022, 10, 15297-15308.	5.2	11
130	Electroless reductions on carbon nanotubes: how critical is the diameter of a nanotube. RSC Advances, 2013, 3, 17693.	1.7	10
131	Investigating Unexpected Magnetism of Mesoporous Silica-Supported Pd and PdO Nanoparticles. Chemistry of Materials, 2015, 27, 29-36.	3.2	10
132	Intrinsically porous molecular building blocks for metal organic frameworks tailored by the bridging effect of counter cations. CrystEngComm, 2020, 22, 2889-2894.	1.3	10
133	Fullereneâ€Catalyzed Reduction of Azo Derivatives in Water under UV Irradiation. Chemistry - an Asian Journal, 2012, 7, 2842-2847.	1.7	9
134	Selective Magnetic Evolution of Mn _{<i>x</i>} Fe _{1â€"<i>x</i>} O Nanoplates. Journal of Physical Chemistry C, 2015, 119, 10740-10748.	1.5	9
135	Adsorptive molecular sieving of linear over branched alkanes using trianglamine host macrocycles for sustainable separation processes. Materials Today Chemistry, 2022, 24, 100840.	1.7	9
136	Degradable gold core–mesoporous organosilica shell nanoparticles for two-photon imaging and gemcitabine monophosphate delivery. Molecular Systems Design and Engineering, 2017, 2, 380-383.	1.7	8
137	Benzotriazolyl-Mediated 1,2-Shifts of Electron-Rich Heterocycles. Journal of Organic Chemistry, 2004, 69, 4269-4271.	1.7	7
138	Conjugationâ€Promoted Reaction of Openâ€Cage Fullerene: A Density Functional Theory Study. ChemPhysChem, 2012, 13, 751-755.	1.0	7
139	Pillar[5]areneâ€Stabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Host–Guest Interactions. Angewandte Chemie, 2019, 131, 15812-15817.	1.6	7
140	C-Aminoimidoylation and C-Thiocarbamoylation of Esters, Sulfones, and Ketones. Journal of Organic Chemistry, 2007, 72, 6742-6748.	1.7	6
141	The Hofmeister effect on nanodiamonds: how addition of ions provides superior drug loading platforms. Biomaterials Science, 2014, 2, 84-88.	2.6	6
142	A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates. Journal of Materials Chemistry B, 2015, 3, 1208-1216.	2.9	6
143	Synthesis and anticancer evaluation of spermatinamine analogues. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1629-1632.	1.0	6
144	Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS Omega, 2018, 3, 14399-14405.	1.6	6

#	Article	IF	Citations
145	Ligand-free gold nanoclusters confined in mesoporous silica nanoparticles for styrene epoxidation. Nanoscale Advances, 2020, 2, 1437-1442.	2.2	6
146	Photostable polymorphic organic cages for targeted live cell imaging. Chemical Science, 2022, 13, 7341-7346.	3.7	5
147	<i>P</i> -Glycoprotein Targeted Nanoscale Drug Carriers. Journal of Nanoscience and Nanotechnology, 2013, 13, 1399-1402.	0.9	4
148	pH Responsive Self-Assembly of Cucurbit[7]urils and Polystyrene-Block-Polyvinylpyridine Micelles for Hydrophobic Drug Delivery. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	4
149	Selfâ€Assembly of Singleâ€Crystal Silver Microflakes on Reduced Graphene Oxide and their Use in Ultrasensitive Sensors. Advanced Materials Interfaces, 2016, 3, 1500658.	1.9	3
150	Resilient Women and the Resiliency of Science. Chemistry of Materials, 2021, 33, 6585-6588.	3.2	3
151	Polystyrene-supported neutral lithium receptor for the recovery of high-purity LiPF ₆ from simulated degraded electrolyte. Journal of Materials Chemistry A, 2022, 10, 14788-14794.	5.2	2
152	Benzotriazolyl-Mediated 1,2-Shifts of Electron-Rich Heterocycles ChemInform, 2004, 35, no.	0.1	1
153	Microwave-Induced Chemotoxicity of Polydopamine-Coated Magnetic Nanocubes. International Journal of Molecular Sciences, 2015, 16, 18283-18292.	1.8	1
154	Engineering nanoparticles for sensing and biomedical applications: a themed collection. Molecular Systems Design and Engineering, 2017, 2, 347-348.	1.7	1
155	Barcoding Amino Acids for Mutation Screening in Amyloid Beta Peptides. Small Methods, 2019, 3, 1900611.	4.6	1
156	Cargo-Delivering Nanodiamonds. , 2016, , 543-555.		0
157	Frontispiece: Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, .	1.7	0
158	Histidine–dialkoxyanthracene dyad for selective and sensitive detection of mercury ions. Supramolecular Chemistry, 2018, 30, 345-350.	1.5	0
159	A Simple, Easy to Fabricate Miniaturized Microfluidic Gradient Generator for Drug Testing Devices. , 2018, , .		0
160	Frontispiz: Lewis Acid Guests in a {P ₈ W ₄₈ } Archetypal Polyoxotungstate Host: Enhanced Proton Conductivity via Metalâ€Oxo Cluster within Cluster Assemblies. Angewandte Chemie, 2018, 130, .	1.6	0
161	3D-Printed Cross-Flow Mixer Gradient within Minutes for Microfluidic Applications., 2018,,.		0
162	Frontispiece: Lewis Acid Guests in a {P ₈ W ₄₈ } Archetypal Polyoxotungstate Host: Enhanced Proton Conductivity via Metalâ€Oxo Cluster within Cluster Assemblies. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0

#	Article	IF	CITATIONS
163	Self-Assembled Metal–Organic Complexes for Thermally Reversible Permeabilization of Cell Membranes. ACS Applied Bio Materials, 2019, 2, 970-974.	2.3	O
164	Titelbild: A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective <i>p</i> â€Xylene Separation (Angew. Chem. 48/2020). Angewandte Chemie, 2020, 132, 21433-21433.	1.6	0