Shaney Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8486670/publications.pdf Version: 2024-02-01

30 papers	1,261 citations	623734 14 h-index	28 g-index
33	33	33	1829
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association of <i>BDNF</i> Val66Met With Tau Hyperphosphorylation and Cognition in Dominantly Inherited Alzheimer Disease. JAMA Neurology, 2022, 79, 261.	9.0	15
2	Baseline Microglial Activation Correlates With Brain Amyloidosis and Longitudinal Cognitive Decline in Alzheimer Disease. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	16
3	Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study. Lancet Neurology, The, 2022, 21, 329-341.	10.2	72
4	Predicting brain age from functional connectivity in symptomatic and preclinical Alzheimer disease. Neurolmage, 2022, 256, 119228.	4.2	27
5	Socioeconomic Status Mediates Racial Differences Seen Using the <scp>AT(N)</scp> Framework. Annals of Neurology, 2021, 89, 254-265.	5.3	42
6	Spatially constrained kinetic modeling with dual reference tissues improves 18F-flortaucipir PET in studies of Alzheimer disease. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3172-3186.	6.4	6
7	Deep learningâ€based T1â€enhanced selection of linear attenuation coefficients (DLâ€TESLA) for PET/MR attenuation correction in dementia neuroimaging. Magnetic Resonance in Medicine, 2021, 86, 499-513.	3.0	11
8	Temporal Correlation of CSF and Neuroimaging in the Amyloid-Tau-Neurodegeneration Model of Alzheimer Disease. Neurology, 2021, 97, e76-e87.	1.1	17
9	Regional Age-Related Atrophy After Screening for Preclinical Alzheimer Disease. Neurobiology of Aging, 2021, 109, 43-51.	3.1	9
10	Modeling autosomal dominant Alzheimer's disease with machine learning. Alzheimer's and Dementia, 2021, 17, 1005-1016.	0.8	12
11	Sex-related Differences in Tau Positron Emission Tomography (PET) and the Effects of Hormone Therapy (HT). Alzheimer Disease and Associated Disorders, 2021, 35, 164-168.	1.3	30
12	Spatiotemporal relationship between subthreshold amyloid accumulation and aerobic glycolysis in the human brain. Neurobiology of Aging, 2020, 96, 165-175.	3.1	13
13	Single-subject grey matter network trajectories over the disease course of autosomal dominant Alzheimer's disease. Brain Communications, 2020, 2, fcaa102.	3.3	11
14	Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease. NeuroImage: Clinical, 2020, 28, 102491.	2.7	17
15	Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease. Neurobiology of Disease, 2020, 142, 104960.	4.4	31
16	Higher Body Mass Index Is Associated with Lower Cortical Amyloid-Î ² Burden in Cognitively Normal Individuals in Late-Life. Journal of Alzheimer's Disease, 2019, 69, 817-827.	2.6	23
17	Comparison of Pittsburgh compound B and florbetapir in crossâ€sectional and longitudinal studies. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 180-190.	2.4	84
18	Tau PET in autosomal dominant Alzheimer's disease: relationship with cognition, dementia and other biomarkers. Brain, 2019, 142, 1063-1076.	7.6	122

SHANEY FLORES

#	Article	IF	CITATIONS
19	Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurology, The, 2018, 17, 241-250.	10.2	383
20	Dynamic prediction during perception of everyday events. Cognitive Research: Principles and Implications, 2018, 3, 53.	2.0	15
21	Utilizing the Centiloid scale in cross-sectional and longitudinal PiB PET studies. NeuroImage: Clinical, 2018, 19, 406-416.	2.7	76
22	Age differences in spatial memory for mediated environments Psychology and Aging, 2018, 33, 892-903.	1.6	12
23	Effects of cues to event segmentation on subsequent memory. Cognitive Research: Principles and Implications, 2017, 2, 1.	2.0	108
24	[ICâ€Pâ€054]: EXAMINING LONGITUDINAL NEUROIMAGING PATTERNS IN AUTOSOMAL DOMINANT ALZHEIMER DISEASE: RESULTS FROM THE DOMINANTLY INHERITED ALZHEIMER NETWORK. Alzheimer's and Dementia, 2017, 13, P44.	0.8	0
25	[O1–02–03]: EXAMINING LONGITUDINAL NEUROIMAGING PATTERNS IN AUTOSOMAL DOMINANT ALZHEIMI DISEASE: FINDINGS FROM THE DOMINANTLY INHERITED ALZHEIMER NETWORK. Alzheimer's and Dementia, 2017, 13, P186.	ER 0.8	0
26	Event segmentation improves event memory up to one month later Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 1183-1202.	0.9	56
27	The effects of weak versus strong relational judgments on response bias in Two-Alternative-Forced-Choice recognition: Is the test criterion-free?. Acta Psychologica, 2016, 167, 30-44.	1.5	15
28	<i>APOE ε4</i> genotype predicts memory for everyday activities. Aging, Neuropsychology, and Cognition, 2015, 22, 639-666.	1.3	8
29	Distraction shrinks space. Memory and Cognition, 2013, 41, 769-780.	1.6	8
30	How are false memories distinguishable from true memories in the Deese–Roediger–McDermott paradigm? A review of the findings. Psychological Research, 2013, 77, 671-686.	1.7	17