Shigeki Koyanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8486512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Verification of algorithm for automatic detection of electronic devices mounted on waste printed circuit boards. Journal of the Air and Waste Management Association, 2022, 72, 420-433.	1.9	5
2	An automated assessment method for integrated circuit chip detachment from printed circuit board by multistep binarization and template matching of X-ray transmission images. Journal of Material Cycles and Waste Management, 2021, 23, 315-322.	3.0	4
3	Genetic Algorithm Based Automatic Input Parameter Calibration Method for the Discrete Element Modeling of Vibration Feeders. Materials Transactions, 2021, 62, 551-556.	1.2	3
4	Elementary-Volume-Scale Simulations of Inertial Flow in Sphere Pack: Improvement of Di Felice Drag Model in High Porosity. Materials Transactions, 2020, 61, 1026-1031.	1.2	3
5	A New Criterion for Decision-Making in Mesh Simplification of 3D-Scanned Objects Used in Discrete-Element Modelling. Materials Transactions, 2020, 61, 1158-1163.	1.2	3
6	Constructing an automatic object-recognition algorithm using labeling information for efficient recycling of WEEE. Waste Management, 2019, 88, 337-346.	7.4	18
7	2D-3D conversion method for assessment of multiple characteristics of particle shape and size. Powder Technology, 2019, 343, 287-295.	4.2	16
8	A general quantification method for addressing stereological bias in mineral liberation assessment in terms of volume fraction and size of mineral phase. Minerals Engineering, 2018, 119, 156-165.	4.3	15
9	Experimental analysis of mineral liberation and stereological bias based on X-ray computed tomography and artificial binary particles. Advanced Powder Technology, 2018, 29, 462-470.	4.1	25
10	Numerical analysis of the general characteristics of stereological bias in surface liberation assessment of ore particles. Advanced Powder Technology, 2018, 29, 3327-3335.	4.1	8
11	Statistical reliability of the liberation distribution of ore particles with respect to number of particle measurements. Minerals Engineering, 2018, 126, 82-88.	4.3	3
12	Stereological correction method based on sectional texture analysis for the liberation distribution of binary particle systems. Advanced Powder Technology, 2017, 28, 1391-1398.	4.1	13
13	Comparison of Seven Texture Analysis Indices for Their Applicability to Stereological Correction of Mineral Liberation Assessment in Binary Particle Systems. Minerals (Basel, Switzerland), 2017, 7, 222.	2.0	10
14	Effect of Particle Shape on the Stereological Bias of the Degree of Liberation of Biphase Particle Systems. Materials Transactions, 2017, 58, 280-286.	1.2	17
15	Novel Numerical Simulation of the Stereological Bias of Binary Particles. Materials Transactions, 2016, 57, 438-444.	1.2	4
16	Statistical effect of sampling particle number on mineral liberation assessment. Minerals Engineering, 2016, 98, 204-212.	4.3	27
17	Stereological bias for spherical particles with various particle compositions. Advanced Powder Technology, 2016, 27, 1828-1838.	4.1	14
18	Numerical simulations of stereological bias in particles with simple texture. Powder Technology, 2016, 298, 130-136	4.2	10

Shigeki Koyanaka

#	Article	IF	CITATIONS
19	Automatic Sorting of Small Electronic Device Scraps to Facilitate Tantalum Recycling. Resources Processing, 2015, 62, 10-16.	0.4	1
20	Recycling Technology for Lithium Ion Battery by Crushing and Classification, and Hydrometallurgical Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 250-257.	0.4	7
21	Elemental analysis of lightweight metal scraps recovered by an automatic sorting technique combining a weight meter and a laser 3D shape-detection system. Resources, Conservation and Recycling, 2013, 75, 63-69.	10.8	9
22	Dynamic Adsorption Behavior for Removal of Cs from Polluted Solution. Kagaku Kogaku Ronbunshu, 2013, 39, 53-59.	0.3	4
23	Incorporation of neural network analysis into a technique for automatically sorting lightweight metal scrap generated by ELV shredder facilities. Resources, Conservation and Recycling, 2011, 55, 515-523.	10.8	31
24	A Study on the Kinetics of Impact Grinding of Copper and Phenol Resin in Printed Circuit Board Scrap. Resources Processing, 2011, 58, 22-27.	0.4	3
25	Advanced Physical Separation Technology for Rare Metal Recycling. Resources Processing, 2011, 58, 95-100.	0.4	2
26	Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape. Resources, Conservation and Recycling, 2010, 54, 571-578.	10.8	36
27	Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes. Journal of Loss Prevention in the Process Industries, 2007, 20, 322-329.	3.3	74
28	Effect of impact velocity control on selective grinding of waste printed circuit boards. Advanced Powder Technology, 2006, 17, 113-126.	4.1	30
29	Numerical simulation of the optical system and medium flow field suitable for particle separation using laser radiation pressure. Advanced Powder Technology, 2004, 15, 321-336.	4.1	4
30	Effect of laser scanning on increase of throughput in particle separation using laser radiation pressure. Advanced Powder Technology, 2004, 15, 337-349.	4.1	2
31	Study on the Movement of Fine Particles in Near-field Region. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2004, 12, 48-52.	0.0	0
32	Three-dimensional analysis of the movement of various micron-sized particles under laser radiation pressure. Powder Technology, 2001, 116, 13-22.	4.2	9
33	Impact Milling of Printed Circuit Board Waste for Resource Recycling and Evaluation of Liberation using Heavy Medium Separation [Translated] ^{â€} . KONA Powder and Particle Journal, 2000, 18, 194-199.	1.7	5
34	The effect of relative refractive index on monosized particle movement under laser radiation pressure. Advanced Powder Technology, 1999, 10, 205-221.	4.1	7
35	Characterization of Composite Particle Layer Formed with a High-speed Elliptical-rotor-type Mixer Kagaku Kogaku Ronbunshu, 1999, 25, 92-98.	0.3	9
36	Particle shape of copper milled by swing-hammer-type impact mill. Powder Technology, 1997, 90, 135-140.	4.2	21

#	Article	IF	CITATIONS
37	Recovering copper from electric cable wastes using a particle shape separation technique. Advanced Powder Technology, 1997, 8, 103-111.	4.1	31
38	The Recycling of Printed Wiring Board Scraps Using a Shape Sorting Technique. Recovering Copper Components by the Inclined Vibrating Method Journal of the Society of Powder Technology, Japan, 1995, 32, 385-391.	0.1	9