
Gee Euhn Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8486110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyanidin 3-O-arabinoside suppresses DHT-induced dermal papilla cell senescence by modulating p38-dependent ER-mitochondria contacts. Journal of Biomedical Science, 2022, 29, 17.	7.0	21
2	High glucoseâ€mediated VPS26a downâ€regulation dysregulates neuronal amyloid precursor protein processing and tau phosphorylation. British Journal of Pharmacology, 2022, 179, 3934-3950.	5.4	11
3	Prenatal glucocorticoid exposure selectively impairs neuroligin 1-dependent neurogenesis by suppressing astrocytic FGF2–neuronal FGFR1 axis. Cellular and Molecular Life Sciences, 2022, 79, 294.	5.4	6
4	Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death and Differentiation, 2021, 28, 184-202.	11.2	79
5	BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nature Communications, 2021, 12, 487.	12.8	79
6	Melatonin activates ABCA1 via the BiP/NRF1 pathway to suppress high-cholesterol-induced apoptosis of mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 114.	5.5	4
7	Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiology of Disease, 2021, 152, 105301.	4.4	30
8	Melatonin restores Muc2 depletion induced by V. vulnificus VvpM via melatonin receptor 2 coupling with Gαq. Journal of Biomedical Science, 2020, 27, 21.	7.0	8
9	Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1. Cell Death and Disease, 2020, 11, 469.	6.3	32
10	High glucoseâ€mediated PICALM and mTORC1 modulate processing of amyloid precursor protein via endosomal abnormalities. British Journal of Pharmacology, 2020, 177, 3828-3847.	5.4	13
11	O-cyclic phytosphingosine-1-phosphate stimulates HIF1α-dependent glycolytic reprogramming to enhance the therapeutic potential of mesenchymal stem cells. Cell Death and Disease, 2019, 10, 590.	6.3	12
12	17β-Estradiol protects mesenchymal stem cells against high glucose-induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling. Free Radical Biology and Medicine, 2019, 130, 328-342.	2.9	63
13	BICD1 mediates HIF1α nuclear translocation in mesenchymal stem cells during hypoxia adaptation. Cell Death and Differentiation, 2019, 26, 1716-1734.	11.2	22
14	Role of HIF1 <i>α</i> Regulatory Factors in Stem Cells. International Journal of Stem Cells, 2019, 12, 8-20.	1.8	26
15	High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression. Cellular Physiology and Biochemistry, 2018, 46, 1749-1767.	1.6	13
16	Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization. Cell Death and Disease, 2018, 9, 1137.	6.3	24
17	Modulation of sonic hedgehogâ€induced mouse embryonic stem cell behaviours through Eâ€cadherin expression and integrin β1â€dependent Fâ€actin formation. British Journal of Pharmacology, 2018, 175, 3548-3562.	5.4	9
18	Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Scientific Reports, 2017, 7, 12582.	3.3	49

GEE EUHN CHOI

#	Article	IF	CITATIONS
19	BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biology, 2017, 13, 426-443.	9.0	60
20	Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation. Journal of Neuroscience, 2017, 37, 8459-8476.	3.6	22
21	Amyloid β1-42 (Aβ1-42) Induces the CDK2-Mediated Phosphorylation of Tau through the Activation of the mTORC1 Signaling Pathway While Promoting Neuronal Cell Death. Frontiers in Molecular Neuroscience, 2017, 10, 229.	2.9	40
22	Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2820-2834.	4.1	137
23	Regulation of Stem Cell Fate by ROS-mediated Alteration of Metabolism. International Journal of Stem Cells, 2015, 8, 24-35.	1.8	41