David Wallach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8485762/publications.pdf Version: 2024-02-01

ΠΑΝΙΟ ΜΑΓΙΑCΗ

#	Article	IF	CITATIONS
1	Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death and Differentiation, 2022, 29, 306-322.	5.0	23
2	Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death and Differentiation, 2018, 25, 1107-1117.	5.0	31
3	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
4	The Tumor Necrosis Factor Family: Family Conventions and Private Idiosyncrasies. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028431.	2.3	27
5	Programmed Cell Death in Immune Defense: Knowledge and Presumptions. Immunity, 2018, 49, 19-32.	6.6	30
6	MLKL, the Protein that Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation. Immunity, 2017, 47, 51-65.e7.	6.6	294
7	Programmed necrosis in inflammation: Toward identification of the effector molecules. Science, 2016, 352, aaf2154.	6.0	431
8	The cybernetics of TNF: Old views and newer ones. Seminars in Cell and Developmental Biology, 2016, 50, 105-114.	2.3	45
9	The In Vivo Significance of Necroptosis: Lessons from Exploration of Caspase-8 Function. , 2014, , 117-133.		0
10	Concepts of tissue injury and cell death in inflammation: a historical perspective. Nature Reviews Immunology, 2014, 14, 51-59.	10.6	197
11	The TNF family: Only the surface has been scratched. Seminars in Immunology, 2014, 26, 181-182.	2.7	6
12	Activation of the NLRP3 Inflammasome by Proteins That Signal for Necroptosis. Methods in Enzymology, 2014, 545, 67-81.	0.4	37
13	The in vivo significance of necroptosis: Lessons from exploration of caspase-8 function. Cytokine and Growth Factor Reviews, 2014, 25, 157-165.	3.2	15
14	Keeping inflammation at bay. ELife, 2014, 3, e02583.	2.8	21
15	The TNF cytokine family: One track in a road paved by many. Cytokine, 2013, 63, 225-229.	1.4	17
16	Caspase-8 Blocks Kinase RIPK3-Mediated Activation of the NLRP3 Inflammasome. Immunity, 2013, 38, 27-40.	6.6	368
17	Phosphorylation and Dephosphorylation of the RIG-I-like Receptors: A Safety Latch on a Fateful Pathway. Immunity, 2013, 38, 402-403.	6.6	14
18	How Do Cells Sense Foreign DNA? A New Outlook on the Function of STING. Molecular Cell, 2013, 50, 1-2.	4.5	24

DAVID WALLACH

#	Article	IF	CITATIONS
19	Survival Function of the FADD-CASPASE-8-cFLIPL Complex. Cell Reports, 2012, 1, 401-407.	2.9	285
20	Anti-inflammatory Functions of Caspase-8. Advances in Experimental Medicine and Biology, 2011, 691, 253-260.	0.8	2
21	Jürg Tschopp. Cytokine, 2011, 54, 233-234.	1.4	0
22	â€~Necrosome'-induced inflammation: must cells die for it?. Trends in Immunology, 2011, 32, 505-509.	2.9	46
23	RIC-I RNA Helicase Activation of IRF3 Transcription Factor Is Negatively Regulated by Caspase-8-Mediated Cleavage of the RIP1 Protein. Immunity, 2011, 34, 340-351.	6.6	182
24	Antiâ€inflammatory functions of the "apoptotic―caspases. Annals of the New York Academy of Sciences, 2010, 1209, 17-22.	1.8	8
25	Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. Journal of Experimental Medicine, 2009, 206, 2161-2177.	4.2	183
26	Self-termination of the terminator. Nature Immunology, 2008, 9, 1325-1327.	7.0	5
27	Cell-autonomous and non-cell-autonomous functions of caspase-8. Cytokine and Growth Factor Reviews, 2008, 19, 209-217.	3.2	11
28	Mutation of a Self-Processing Site in Caspase-8 Compromises Its Apoptotic but Not Its Nonapoptotic Functions in Bacterial Artificial Chromosome-Transgenic Mice. Journal of Immunology, 2008, 181, 2522-2532.	0.4	113
29	The CD95 Receptor: Apoptosis Revisited. Cell, 2007, 129, 447-450.	13.5	352
30	Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology, 2007, 45, 1014-1024.	3.6	75
31	MORT1/FADD is involved in liver regeneration. World Journal of Gastroenterology, 2005, 11, 7248.	1.4	13
32	Tumor Necrosis Factor (TNF) Receptor Shedding Controls Thresholds of Innate Immune Activation That Balance Opposing TNF Functions in Infectious and Inflammatory Diseases. Journal of Experimental Medicine, 2004, 200, 367-376.	4.2	168
33	Caspase-8 Serves Both Apoptotic and Nonapoptotic Roles. Journal of Immunology, 2004, 173, 2976-2984.	0.4	339
34	Receptor-Specific Signaling for Both the Alternative and the Canonical NF-ήB Activation Pathways by NF-ήB-Inducing Kinase. Immunity, 2004, 21, 477-489.	6.6	221
35	The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature, 2003, 424, 801-805.	13.7	942
36	How are the regulators regulated? The search for mechanisms that impose specificity on induction of cell death and NF-kappaB activation by members of the TNF/NGF receptor family. Arthritis Research, 2002, 4, S189.	2.0	41

DAVID WALLACH

#	Article	IF	CITATIONS
37	Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo. Pharmaceutical Research, 2000, 17, 1546-1550.	1.7	44
38	Recruitment of the IKK Signalosome to the p55 TNF Receptor. Immunity, 2000, 12, 301-311.	6.6	435
39	Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Current Opinion in Immunology, 1998, 10, 279-288.	2.4	72
40	Targeted Disruption of the Mouse Caspase 8 Gene Ablates Cell Death Induction by the TNF Receptors, Fas/Apo1, and DR3 and Is Lethal Prenatally. Immunity, 1998, 9, 267-276.	6.6	1,139
41	CASH, a Novel Caspase Homologue with Death Effector Domains. Journal of Biological Chemistry, 1997, 272, 19641-19644.	1.6	286
42	MAP3K-related kinase involved in NF-KB induction by TNF, CD95 and IL-1. Nature, 1997, 385, 540-544.	13.7	1,288
43	Involvement of MACH, a Novel MORT1/FADD-Interacting Protease, in Fas/APO-1- and TNF Receptor–Induced Cell Death. Cell, 1996, 85, 803-815.	13.5	2,221
44	Self-association of the "Death Domains―of the p55 Tumor Necrosis Factor (TNF) Receptor and Fas/APO1 Prompts Signaling for TNF and Fas/APO1 Effects. Journal of Biological Chemistry, 1995, 270, 387-391.	1.6	355
45	A Novel Protein That Interacts with the Death Domain of Fas/APO1 Contains a Sequence Motif Related to the Death Domain. Journal of Biological Chemistry, 1995, 270, 7795-7798.	1.6	916
46	Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis and Rheumatism, 1992, 35, 1160-1169.	6.7	310
47	Induction of hyporesponsiveness to an early post-binding effect of tumor necrosis factor by tumor necrosis factor itself and interleukin 1. European Journal of Immunology, 1991, 21, 1741-1745.	1.6	8
48	Interrelated Effects of Tumor Necrosis Factor and Interleukin 1 on Cell Viability. Immunobiology, 1988, 177, 7-22.	0.8	45
49	Reduced production of tumor necrosis factor by mononuclear cells in hairy cell leukemia patients and improvement following interferon therapy. Cancer, 1987, 60, 2208-2212.	2.0	18
50	Translation of mRNA for human lymphotoxin in microinjected Xenopus oocytes. FEBS Letters, 1984, 178, 257-263.	1.3	3
51	Interferon-Induced resistance to the killing by NK cells: A preferential effect of IFN-γ. Cellular Immunology, 1983, 75, 390-395.	1.4	38
52	Enhanced release of lymphotoxins by interferon-treated cells. Cellular Immunology, 1983, 76, 390-396.	1.4	20
53	The HLA proteins and a related protein of 28 kDa are preferentially induced by interferon-γ in human WISH cells. European Journal of Immunology, 1983, 13, 794-798.	1.6	13
54	Regulation of Susceptibility to Natural Killer Cells' Cytotoxicity and Regulation of HLA Synthesis: Differing Efficacies of Alpha, Beta, and Gamma Interferons. Journal of Interferon Research, 1982, 2, 329-338.	1.2	21

DAVID WALLACH

#	Article	IF	CITATIONS
55	Preferential effect of γ interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature, 1982, 299, 833-836.	13.7	387
56	An interferon-induced cellular enzyme is incorporated into virions. Nature, 1980, 287, 68-70.	13.7	29
57	Hormonal protection of interferon-treated cells against double-stranded RNA-induced cytolysis. FEBS Letters, 1979, 101, 364-368.	1.3	8