Anne E Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8485348/publications.pdf

Version: 2024-02-01

623734 610901 1,659 30 14 24 citations g-index h-index papers 34 34 34 1386 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14864-14868.	7.1	357
2	Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Developmental Biology, 2006, 296, 353-362.	2.0	212
3	Bicarbonate actions on flagellar and Ca2+-channel responses:initial events in sperm activation. Development (Cambridge), 2003, 130, 1317-1326.	2.5	176
4	Identical Phenotypes of CatSper1 and CatSper2 Null Sperm. Journal of Biological Chemistry, 2005, 280, 32238-32244.	3. 4	149
5	External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Developmental Biology, 2007, 312, 183-192.	2.0	108
6	Structure of the carboxy-terminal region of a KCNH channel. Nature, 2012, 481, 530-533.	27.8	108
7	The structural mechanism of KCNH-channel regulation by the eag domain. Nature, 2013, 501, 444-448.	27.8	100
8	Absence of Direct Cyclic Nucleotide Modulation of mEAG1 and hERG1 Channels Revealed with Fluorescence and Electrophysiological Methods. Journal of Biological Chemistry, 2009, 284, 27989-27997.	3.4	90
9	Pharmacological Targeting of Native CatSper Channels Reveals a Required Role in Maintenance of Sperm Hyperactivation. PLoS ONE, 2009, 4, e6844.	2.5	89
10	Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ are both required to open the Clâ ⁻ channel TMEM16A. Journal of Biological Chemistry, 2019, 294, 12556-12564.	3.4	41
11	Signaling Pathways for Modulation of Mouse Sperm Motility by Adenosine and Catecholamine Agonists 1. Biology of Reproduction, 2006, 74, 492-500.	2.7	35
12	The TMEM16A channel mediates the fast polyspermy block in <i>Xenopus laevis</i> . Journal of General Physiology, 2018, 150, 1249-1259.	1.9	35
13	Flavonoid regulation of EAG1 channels. Journal of General Physiology, 2013, 141, 347-358.	1.9	31
14	Ion channels and signaling pathways used in the fast polyspermy block. Molecular Reproduction and Development, 2020, 87, 350-357.	2.0	21
15	PLC and IP3-evoked Ca2+ release initiate the fast block to polyspermy in <i>Xenopus laevis</i> lournal of General Physiology, 2018, 150, 1239-1248.	1.9	17
16	Dequalinium. Journal of General Physiology, 2003, 121, 37-47.	1.9	13
17	Identifying Regulators for EAG1 Channels with a Novel Electrophysiology and Tryptophan Fluorescence Based Screen. PLoS ONE, 2010, 5, e12523.	2.5	13
18	Flavonoid Regulation of HCN2 Channels. Journal of Biological Chemistry, 2013, 288, 33136-33145.	3.4	12

#	Article	IF	CITATIONS
19	Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis. PLoS ONE, 2017, 12, e0170405.	2.5	12
20	Zinc protection of fertilized eggs is an ancient feature of sexual reproduction in animals. PLoS Biology, 2020, 18, e3000811.	5.6	11
21	Optimized design of antisense oligomers for targeted rRNA depletion. Nucleic Acids Research, 2021, 49, e5-e5.	14.5	11
22	Mechanical stimulation activates $\langle i \rangle$ Drosophila $\langle i \rangle$ eggs via Trpm channels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18757-18758.	7.1	5
23	Tiny Dancer: EFCAB9 Triggers Sperm Hyperactivation via CatSper. Trends in Biochemical Sciences, 2019, 44, 823-826.	7.5	2
24	Under pressure: Ano1 mediates pressure sensing in the lymphatic system. Journal of General Physiology, 2019, 151, 404-406.	1.9	2
25	Phosphate position is key in mediating transmembrane ion channel TMEM16A–phosphatidylinositol 4,5-bisphosphate interaction. Journal of Biological Chemistry, 2022, 298, 102264.	3.4	2
26	The secrets of success. ELife, 2020, 9, .	6.0	1
27	A Regulator for Eag Family Channels. Biophysical Journal, 2009, 96, 562a.	0.5	0
28	Flavonoids Regulate Eag1 Channels. Biophysical Journal, 2010, 98, 1a.	0.5	0
29	TMEM16A Mediates the Fast Block to Polyspermy in Xenopus Laevis Eggs. Biophysical Journal, 2017, 112, 552a.	0.5	0
30	Actin polymerization is not required for the fast block to polyspermy in the African clawed frog,. MicroPublication Biology, 2021, 2021, .	0.1	0