
## Dai-Bin Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/848529/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic<br>Nanostructures. Angewandte Chemie - International Edition, 2004, 43, 4988-4992.                                                                 | 7.2  | 1,127     |
| 2  | A CsPbBr <sub>3</sub> Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO <sub>2</sub> Reduction. Journal of the American Chemical Society, 2017, 139, 5660-5663.                                                           | 6.6  | 946       |
| 3  | Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar<br>Cells Based on Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 6550-6560.                                                       | 1.5  | 870       |
| 4  | Application of Highly Ordered TiO <sub>2</sub> Nanotube Arrays in Flexible Dye-Sensitized Solar Cells.<br>ACS Nano, 2008, 2, 1113-1116.                                                                                                       | 7.3  | 630       |
| 5  | High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized<br>Solar Cells. Journal of the American Chemical Society, 2006, 128, 4146-4154.                                                               | 6.6  | 538       |
| 6  | Synthesis and Photocatalytic Application of Stable Leadâ€Free Cs <sub>2</sub> AgBiBr <sub>6</sub><br>Perovskite Nanocrystals. Small, 2018, 14, e1703762.                                                                                      | 5.2  | 443       |
| 7  | Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte.<br>Journal of the American Chemical Society, 2006, 128, 7732-7733.                                                                           | 6.6  | 441       |
| 8  | Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy and Environmental Science, 2016, 9, 1468-1475.                                                                          | 15.6 | 437       |
| 9  | Core@Shell CsPbBr <sub>3</sub> @Zeolitic Imidazolate Framework Nanocomposite for Efficient<br>Photocatalytic CO <sub>2</sub> Reduction. ACS Energy Letters, 2018, 3, 2656-2662.                                                               | 8.8  | 425       |
| 10 | Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 8111-8117.                                                               | 1.5  | 413       |
| 11 | Organic Dye‧ensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance<br>through Molecular Design of Indoline Sensitizers. Angewandte Chemie - International Edition, 2008,<br>47, 1923-1927.                           | 7.2  | 389       |
| 12 | Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process.<br>Advanced Materials, 2003, 15, 1747-1750.                                                                                                 | 11.1 | 361       |
| 13 | Oriented hierarchical single crystalline anatase TiO <sub>2</sub> nanowire arrays on Ti-foil substrate<br>for efficient flexible dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 5750-5757.                            | 15.6 | 353       |
| 14 | High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction<br>Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte. Advanced Materials, 2007, 19, 1133-1137.                                   | 11.1 | 332       |
| 15 | A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection.<br>Angewandte Chemie - International Edition, 2019, 58, 5277-5281.                                                                   | 7.2  | 310       |
| 16 | In Situ Construction of a Cs <sub>2</sub> SnI <sub>6</sub> Perovskite Nanocrystal/SnS <sub>2</sub><br>Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. Journal of the American<br>Chemical Society, 2019, 141, 13434-13441. | 6.6  | 303       |
| 17 | Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates. Journal of the American Chemical Society, 2004, 126, 10534-10535.                                                                                | 6.6  | 299       |
| 18 | Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for<br>Dye-sensitized Solar Cells. Scientific Reports, 2013, 3, 1352.                                                                                    | 1.6  | 291       |

| #  | Article                                                                                                                                                                                                                                  | IF    | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 19 | Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 4079.                                               | 15.6  | 287       |
| 20 | All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic<br>CO2 Reduction. CheM, 2020, 6, 766-780.                                                                                             | 5.8   | 280       |
| 21 | Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nature Photonics, 2008, 2,<br>693-698.                                                                                                                         | 15.6  | 279       |
| 22 | In Situ Growth of 120 cm <sup>2</sup> CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite<br>Crystal Film on FTO Glass for Narrowbandâ€Photodetectors. Advanced Materials, 2017, 29, 1602639.                                   | 11.1  | 252       |
| 23 | Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition. ACS Nano, 2011, 5, 9494-9500.                                                                                             | 7.3   | 249       |
| 24 | Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free<br>(C <sub>4</sub> H <sub>14</sub> N <sub>2</sub> ) <sub>2</sub> In <sub>2</sub> Br <sub>10</sub> Single<br>Crystal. Angewandte Chemie - International Edition, 2019, 58, 15435-15440. | 7.2   | 244       |
| 25 | Z‣cheme 2D/2D Heterojunction of CsPbBr <sub>3</sub> /Bi <sub>2</sub> WO <sub>6</sub> for Improved Photocatalytic CO <sub>2</sub> Reduction. Advanced Functional Materials, 2020, 30, 2004293.                                            | 7.8   | 234       |
| 26 | Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for<br>High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136,<br>6437-6445.                            | 6.6   | 224       |
| 27 | Ordered Crystalline TiO <sub>2</sub> Nanotube Arrays on Transparent FTO Glass for Efficient<br>Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15228-15233.                                                      | 1.5   | 201       |
| 28 | Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. Journal of<br>Materials Chemistry A, 2017, 5, 2066-2072.                                                                                    | 5.2   | 198       |
| 29 | Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar<br>Cells. Langmuir, 2007, 23, 10906-10909.                                                                                            | 1.6   | 196       |
| 30 | Improving the Extraction of Photogenerated Electrons with SnO <sub>2</sub> Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 7200-7207.                                                 | 7.8   | 194       |
| 31 | Stable, Highâ€Efficiency Ionic‣iquidâ€Based Mesoscopic Dyeâ€Sensitized Solar Cells. Small, 2007, 3, 2094-210                                                                                                                             | 025.2 | 191       |
| 32 | Intrinsic Selfâ€Trapped Emission in OD Leadâ€Free<br>(C <sub>4</sub> H <sub>14</sub> N <sub>2</sub> ) <sub>2</sub> In <sub>2</sub> Br <sub>10</sub> Single<br>Crystal. Angewandte Chemie, 2019, 131, 15581-15586.                        | 1.6   | 190       |
| 33 | Ultra-long anatase TiO2nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 644-649.                                                 | 15.6  | 176       |
| 34 | Principles of Hierarchical Meso- and Macropore Architectures by Liquid Crystalline and Polymer Colloid Templating. Langmuir, 2006, 22, 2311-2322.                                                                                        | 1.6   | 169       |
| 35 | Self-supported NiMoP <sub>2</sub> nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.                                               | 5.2   | 168       |
| 36 | Achieving high-performance planar perovskite solar cell with Nb-doped TiO <sub>2</sub> compact<br>layer by enhanced electron injection and efficient charge extraction. Journal of Materials Chemistry<br>A, 2016, 4, 5647-5653.         | 5.2   | 163       |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Atomically Thin Defectâ€Rich Fe–Mn–O Hybrid Nanosheets as High Efficient Electrocatalyst for Water<br>Oxidation. Advanced Functional Materials, 2018, 28, 1802463.                                                       | 7.8 | 163       |
| 38 | Fabrication of Novel Hierarchical β-Ni(OH) <sub>2</sub> and NiO Microspheres via an Easy<br>Hydrothermal Process. Journal of Physical Chemistry C, 2009, 113, 5508-5513.                                                 | 1.5 | 162       |
| 39 | Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles,<br>nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry, 2012, 22, 7910.           | 6.7 | 162       |
| 40 | Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells:  Influence of<br>Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells. Nano Letters, 2006, 6,<br>769-773. | 4.5 | 161       |
| 41 | Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures.<br>Nature Communications, 2014, 5, 3968.                                                                                   | 5.8 | 156       |
| 42 | Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole. Journal of Materials Chemistry, 2012, 22, 8994.                         | 6.7 | 150       |
| 43 | Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science, 2011, 2, 1396.                                                         | 3.7 | 148       |
| 44 | High Molar Extinction Coefficient Ion-Coordinating Ruthenium Sensitizer for Efficient and Stable<br>Mesoscopic Dye-Sensitized Solar Cells. Advanced Functional Materials, 2007, 17, 154-160.                             | 7.8 | 147       |
| 45 | All-Inorganic Lead-Free Cs <sub>2</sub> PdX <sub>6</sub> (X = Br, I) Perovskite Nanocrystals with<br>Single Unit Cell Thickness and High Stability. ACS Energy Letters, 2018, 3, 2613-2619.                              | 8.8 | 143       |
| 46 | Multifunctional Phosphorus ontaining Lewis Acid and Base Passivation Enabling Efficient and<br>Moisture‧table Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910710.                                  | 7.8 | 143       |
| 47 | Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of<br>Materials Chemistry, 2012, 22, 15475.                                                                             | 6.7 | 141       |
| 48 | Organic Dye Bearing Asymmetric Double Donor-Ï€-Acceptor Chains for Dye-Sensitized Solar Cells.<br>Journal of Organic Chemistry, 2011, 76, 8015-8021.                                                                     | 1.7 | 140       |
| 49 | A micron-scale laminar MAPbBr <sub>3</sub> single crystal for an efficient and stable perovskite solar cell. Chemical Communications, 2017, 53, 5163-5166.                                                               | 2.2 | 135       |
| 50 | Enhanced Solar-Driven Gaseous CO <sub>2</sub> Conversion by CsPbBr <sub>3</sub> Nanocrystal/Pd<br>Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials, 2018, 1, 5083-5089.                           | 2.5 | 135       |
| 51 | Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. Science Advances, 2021, 7, .                                                                                    | 4.7 | 134       |
| 52 | All-Inorganic Lead-Free Heterometallic Cs4MnBi2Cl12 Perovskite Single Crystal with Highly Efficient<br>Orange Emission. Matter, 2020, 3, 892-903.                                                                        | 5.0 | 133       |
| 53 | An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2006, 16, 2978-2983.                                                        | 6.7 | 130       |
| 54 | Influence of Ionic Liquids Bearing Functional Groups in Dye-Sensitized Solar Cells. Inorganic<br>Chemistry, 2006, 45, 1585-1590.                                                                                         | 1.9 | 130       |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fabrication of boehmite AlOOH and $\hat{I}^3$ -Al2O3 nanotubes via a soft solution route. Journal of Materials Chemistry, 2003, 13, 660-662.                                                                                                 | 6.7  | 128       |
| 56 | A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional<br>optoelectronic properties and long-term stability. Journal of Materials Chemistry A, 2017, 5,<br>19431-19438.                                 | 5.2  | 126       |
| 57 | Amorphousâ€TiO <sub>2</sub> â€Encapsulated CsPbBr <sub>3</sub> Nanocrystal Composite Photocatalyst<br>with Enhanced Charge Separation and CO <sub>2</sub> Fixation. Advanced Materials Interfaces, 2018,<br>5, 1801015.                      | 1.9  | 125       |
| 58 | Understanding of carrier dynamics, heterojunction merits and device physics: towards designing<br>efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 2020, 49,<br>354-381.                             | 18.7 | 125       |
| 59 | Hierarchical CsPbBr <sub>3</sub> nanocrystal-decorated ZnO nanowire/macroporous graphene<br>hybrids for enhancing charge separation and photocatalytic CO <sub>2</sub> reduction. Journal of<br>Materials Chemistry A, 2019, 7, 13762-13769. | 5.2  | 115       |
| 60 | An Overview for Zeroâ€Dimensional Broadband Emissive Metalâ€Halide Single Crystals. Advanced Optical<br>Materials, 2021, 9, 2100544.                                                                                                         | 3.6  | 114       |
| 61 | Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye ensitized Solar<br>Cells. Chemistry - A European Journal, 2010, 16, 8757-8761.                                                                                 | 1.7  | 111       |
| 62 | Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient<br>Dye-sensitized Solar Cells. Scientific Reports, 2013, 3, 1892.                                                                                | 1.6  | 111       |
| 63 | A Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar<br>Cells. Inorganic Chemistry, 2006, 45, 10407-10409.                                                                                  | 1.9  | 104       |
| 64 | Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 18057.           | 6.7  | 100       |
| 65 | Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine<br>Cobalt Iron Oxide Nanoparticle. Advanced Functional Materials, 2016, 26, 4414-4421.                                                           | 7.8  | 97        |
| 66 | Enhanced On–Off Ratio Photodetectors Based on Leadâ€Free<br>Cs <sub>3</sub> Bi <sub>2</sub> I <sub>9</sub> Single Crystal Thin Films. Advanced Functional<br>Materials, 2020, 30, 1909701.                                                   | 7.8  | 96        |
| 67 | Recent Advances in Halide Perovskite Singleâ€Crystal Thin Films: Fabrication Methods and<br>Optoelectronic Applications. Solar Rrl, 2019, 3, 1800294.                                                                                        | 3.1  | 94        |
| 68 | Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the Triton<br>X-100/cyclohexane/water reverse micelles. Journal of Crystal Growth, 2002, 244, 379-383.                                                                     | 0.7  | 92        |
| 69 | In Situ Photosynthesis of an MAPbI <sub>3</sub> /CoP Hybrid Heterojunction for Efficient<br>Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2001478.                                                             | 7.8  | 92        |
| 70 | Electrospun Hierarchical TiO <sub>2</sub> Nanorods with High Porosity for Efficient Dye-Sensitized<br>Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 9205-9211.                                                                   | 4.0  | 91        |
| 71 | A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale, 2013, 5, 4362.                                                                              | 2.8  | 91        |
| 72 | CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy, 2015, 11, 621-630.                                                                                                            | 8.2  | 91        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | "Brick and Mortar―Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from<br>Nanocrystalline Building Blocks. Chemistry of Materials, 2009, 21, 1260-1265.                                                      | 3.2  | 90        |
| 74 | High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells.<br>Journal of Materials Chemistry, 2012, 22, 12058.                                                                                  | 6.7  | 90        |
| 75 | Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15365-15376.                                                                                   | 5.2  | 90        |
| 76 | Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with<br>Homogeneous or Heterogeneous Compositions for Efficient Solar Cells. Angewandte Chemie -<br>International Edition, 2014, 53, 4816-4821.            | 7.2  | 90        |
| 77 | Hierarchical Tin Oxide Octahedra for Highly Efficient Dyeâ€Sensitized Solar Cells. Chemistry - A<br>European Journal, 2010, 16, 8620-8625.                                                                                             | 1.7  | 86        |
| 78 | Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole<br>donors for liquid and quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A,<br>2014, 2, 8988-8994.     | 5.2  | 84        |
| 79 | A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stability and efficiency: a test with new triazatruxene-based hole transporting materials. Journal of Materials Chemistry A, 2017, 5, 1913-1918. | 5.2  | 83        |
| 80 | Phenothiazine-based dyes with bilateral extension of π-conjugation for efficient dye-sensitized solar cells. Dyes and Pigments, 2013, 96, 722-731.                                                                                     | 2.0  | 82        |
| 81 | Three-Dimensional TiO <sub>2</sub> /ZnO Hybrid Array as a Heterostructured Anode for Efficient<br>Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 5199-5205.                                          | 4.0  | 82        |
| 82 | Conformal coating of ultrathin metal-organic framework on semiconductor electrode for boosted photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 237, 9-17.                                               | 10.8 | 82        |
| 83 | High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, 11, 5149.                                                                                      | 5.8  | 82        |
| 84 | CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano<br>Energy, 2014, 8, 1-8.                                                                                                        | 8.2  | 81        |
| 85 | Controllable Electrochemical Synthesis of Hierarchical ZnO Nanostructures on FTO Glass. Journal of Physical Chemistry C, 2009, 113, 13574-13582.                                                                                       | 1.5  | 79        |
| 86 | Trilateral π-conjugation extensions of phenothiazine-based dyes enhance the photovoltaic performance of the dye-sensitized solar cells. Dyes and Pigments, 2016, 124, 63-71.                                                           | 2.0  | 75        |
| 87 | Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. Journal of Materials Chemistry A, 2015, 3, 1333-1344.                                                                         | 5.2  | 72        |
| 88 | Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. Journal of Materials Chemistry A, 2019, 7, 9025-9033.                                     | 5.2  | 71        |
| 89 | Plasmonic CsPbBr3–Au nanocomposite for excitation wavelength dependent photocatalytic CO2<br>reduction. Journal of Energy Chemistry, 2021, 53, 309-315.                                                                                | 7.1  | 70        |
| 90 | A Review of Diverse Halide Perovskite Morphologies for Efficient Optoelectronic Applications. Small<br>Methods, 2020, 4, 1900662.                                                                                                      | 4.6  | 69        |

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-performance dye-sensitized solar cells based on hierarchical yolk–shell anatase<br>TiO <sub>2</sub> beads. Journal of Materials Chemistry, 2012, 22, 1627-1633.                                                                                                   | 6.7 | 67        |
| 92  | Activation of Selfâ€Trapped Emission in Stable Bismuthâ€Halide Perovskite by Suppressing Strong<br>Exciton–Phonon Coupling. Advanced Functional Materials, 2021, 31, 2102654.                                                                                          | 7.8 | 67        |
| 93  | All-solid-state electrolytes consisting of ionic liquid and carbon black for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 8-14.                                                                           | 2.0 | 66        |
| 94  | CsPbBr <sub>3</sub> Nanocrystal/MO <sub>2</sub> (M = Si, Ti, Sn) Composites: Insight into<br>Charge-Carrier Dynamics and Photoelectrochemical Applications. ACS Applied Materials &<br>Interfaces, 2018, 10, 42301-42309.                                              | 4.0 | 66        |
| 95  | Extraordinarily Efficient Conduction in a Redoxâ€Active Ionic Liquid. ChemPhysChem, 2011, 12, 145-149.                                                                                                                                                                 | 1.0 | 65        |
| 96  | Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells. Nanoscale, 2013, 5, 5940.                                                                                                                              | 2.8 | 65        |
| 97  | Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl <sub>4</sub> Treated 3D<br>Antimonyâ€Doped SnO <sub>2</sub> Macropore/Branched αâ€Fe <sub>2</sub> O <sub>3</sub> Nanorod<br>Heterojunction Photoanode. Advanced Science, 2015, 2, 1500049. | 5.6 | 65        |
| 98  | The top-down synthesis of single-layered Cs <sub>4</sub> CuSb <sub>2</sub> Cl <sub>12</sub> halide perovskite nanocrystals for photoelectrochemical application. Nanoscale, 2019, 11, 5180-5187.                                                                       | 2.8 | 65        |
| 99  | Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 92, 117-123.                                                                                           | 2.6 | 64        |
| 100 | Large-Area Synthesis of a Ni <sub>2</sub> P Honeycomb Electrode for Highly Efficient Water Splitting.<br>ACS Applied Materials & Interfaces, 2017, 9, 32812-32819.                                                                                                     | 4.0 | 62        |
| 101 | Macroporous SnO <sub>2</sub> Synthesized via a Template-Assisted Reflux Process for Efficient<br>Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5105-5111.                                                                                   | 4.0 | 61        |
| 102 | Self-assembly of 2D Borromean networks through hydrogen-bonding recognition. Chemical Communications, 2009, , 2387.                                                                                                                                                    | 2.2 | 59        |
| 103 | Effect of Hydrocarbon Chain Length of Disubstituted Triphenyl-amine-Based Organic Dyes on Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22002-22008.                                                                                         | 1.5 | 59        |
| 104 | Zeroâ€Dimensional Znâ€Based Halides with Ultraâ€Long Roomâ€Temperature Phosphorescence for<br>Timeâ€Resolved Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2022, 61, .                                                                              | 7.2 | 59        |
| 105 | Novel dithieno[3,2-b:2′,3′-d]pyrrole-based organic dyes with high molar extinction coefficient for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2071-2081.                                                                                               | 1.4 | 58        |
| 106 | Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nature Communications, 2021, 12, 1202.                                                                                                      | 5.8 | 58        |
| 107 | A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection.<br>Angewandte Chemie, 2019, 131, 5331-5335.                                                                                                                   | 1.6 | 57        |
| 108 | A new ion-coordinating ruthenium sensitizer for mesoscopic dye-sensitized solar cells. Inorganica<br>Chimica Acta, 2008, 361, 699-706.                                                                                                                                 | 1.2 | 56        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires.<br>Nature Photonics, 2022, 16, 284-290.                                                                    | 15.6 | 56        |
| 110 | Performance of dye-sensitized solar cells based on novel sensitizers bearing asymmetric double Dâ~Ï€â~'A<br>chains with arylamines as donors. Dyes and Pigments, 2012, 94, 481-489.                            | 2.0  | 54        |
| 111 | Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 6-11.                                | 4.0  | 54        |
| 112 | Ordered macroporous CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> perovskite semitransparent film for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15662-15669.                 | 5.2  | 54        |
| 113 | A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells. Journal of<br>Materials Chemistry A, 2013, 1, 1724-1730.                                                            | 5.2  | 53        |
| 114 | Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells.<br>Chemistry of Materials, 2019, 31, 5431-5441.                                                               | 3.2  | 53        |
| 115 | Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 312, 121358.                     | 10.8 | 53        |
| 116 | Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. Journal of Materials Chemistry A, 2017, 5, 12699-12717.                                   | 5.2  | 52        |
| 117 | Synthesis of hierarchical SnO2 octahedra with tailorable size and application in dye-sensitized solar cells with enhanced power conversion efficiency. Journal of Materials Chemistry, 2012, 22, 21495.        | 6.7  | 51        |
| 118 | In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting.<br>Journal of Materials Chemistry A, 2016, 4, 5124-5129.                                                    | 5.2  | 51        |
| 119 | Immobilizing Re(CO) <sub>3</sub> Br(dcbpy) Complex on CsPbBr <sub>3</sub> Nanocrystal for Boosted Charge Separation and Photocatalytic CO <sub>2</sub> Reduction. Solar Rrl, 2020, 4, 1900365.                 | 3.1  | 51        |
| 120 | CdS/CdSe Quantum Dot Shell Decorated Vertical ZnO Nanowire Arrays by Spinâ€Coatingâ€Based SILAR for<br>Photoelectrochemical Cells and Quantumâ€Dotâ€Sensitized Solar Cells. ChemPhysChem, 2012, 13, 1435-1439. | 1.0  | 50        |
| 121 | Mazeâ€Like Halide Perovskite Films for Efficient Electron Transport Layerâ€Free Perovskite Solar Cells.<br>Solar Rrl, 2019, 3, 1800268.                                                                        | 3.1  | 49        |
| 122 | The Electronic Role of the TiO2Light-Scattering Layer in Dye-Sensitized Solar Cells. Zeitschrift Fur<br>Physikalische Chemie, 2007, 221, 319-327.                                                              | 1.4  | 48        |
| 123 | Three-dimensional hyperbranched TiO <sub>2</sub> /ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14826-14832.                        | 5.2  | 48        |
| 124 | Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Science China<br>Materials, 2017, 60, 285-294.                                                                                 | 3.5  | 48        |
| 125 | Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance. Dyes and Pigments, 2015, 114, 47-54.                                                         | 2.0  | 47        |
| 126 | Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929.                                              | 8.2  | 47        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Solvent selection and Pt decoration towards enhanced photocatalytic CO <sub>2</sub> reduction over CsPbBr <sub>3</sub> perovskite single crystals. Sustainable Energy and Fuels, 2020, 4, 2249-2255.                                                                                                 | 2.5  | 47        |
| 128 | Hydrothermal Fabrication of Quasiâ€Oneâ€Dimensional Singleâ€Crystalline Anatase TiO <sub>2</sub><br>Nanostructures on FTO Glass and Their Applications in Dye‣ensitized Solar Cells. Chemistry - A<br>European Journal, 2011, 17, 1352-1357.                                                         | 1.7  | 46        |
| 129 | Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 13175.                                                                                                                           | 1.3  | 46        |
| 130 | A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy, 2014, 9, 15-24.                                                                                                                                     | 8.2  | 46        |
| 131 | Trilayered Photoanode of TiO <sub>2</sub> Nanoparticles on a 1D–3D Nanostructured<br>TiO <sub>2</sub> -Grown Flexible Ti Substrate for High-Efficiency (9.1%) Dye-Sensitized Solar Cells with<br>Unprecedentedly High Photocurrent Density. Journal of Physical Chemistry C, 2014, 118, 16426-16432. | 1.5  | 46        |
| 132 | A novel metal–organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells.<br>Journal of Materials Chemistry A, 2014, 2, 15406.                                                                                                                                         | 5.2  | 45        |
| 133 | F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar<br>Cells with Fill Factor Exceeding 84%. ACS Nano, 2022, 16, 10798-10810.                                                                                                                         | 7.3  | 45        |
| 134 | Template-free solvothermal fabrication of hierarchical TiO2 hollow microspheres for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13274.                                                                                                                          | 5.2  | 44        |
| 135 | Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process. Journal of Materials Chemistry, 2011, 21, 8709.                                                                                                                               | 6.7  | 43        |
| 136 | Hierarchical Macroporous Zn <sub>2</sub> SnO <sub>4</sub> –ZnO Nanorod Composite<br>Photoelectrodes for Efficient CdS/CdSe Quantum Dot Co-Sensitized Solar Cells. ACS Applied Materials<br>& Interfaces, 2013, 5, 11865-11871.                                                                       | 4.0  | 43        |
| 137 | Hierarchical Zn2SnO4 nanosheets consisting of nanoparticles for efficient dye-sensitized solar cells.<br>Nano Energy, 2013, 2, 1287-1293.                                                                                                                                                            | 8.2  | 42        |
| 138 | Recent advances in hierarchical macroporous composite structures for photoelectric conversion.<br>Energy and Environmental Science, 2014, 7, 3887-3901.                                                                                                                                              | 15.6 | 42        |
| 139 | Room Temperature Fabrication of SnO <sub>2</sub> Electrodes Enabling Barrierâ€Free Electron<br>Extraction for Efficient Flexible Perovskite Photovoltaics. Advanced Functional Materials, 2022, 32, .                                                                                                | 7.8  | 42        |
| 140 | Branched titania nanostructures for efficient energy conversion and storage: A review on design strategies, structural merits and multifunctionalities. Nano Energy, 2019, 62, 791-809.                                                                                                              | 8.2  | 41        |
| 141 | Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. RSC Advances, 2012, 2, 7788.                                                                                                                                    | 1.7  | 40        |
| 142 | Electrospun TiO 2 nanofiber based hierarchical photoanode for efficient dye-sensitized solar cells.<br>Electrochimica Acta, 2016, 189, 259-264.                                                                                                                                                      | 2.6  | 39        |
| 143 | Te4+-doped Cs2InCl5·H2O single crystals for remote optical thermometry. Science China Materials, 2022, 65, 764-772.                                                                                                                                                                                  | 3.5  | 38        |
| 144 | Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Solar Energy, 2011, 85, 1189-1194.                                                                                                                                                                     | 2.9  | 36        |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs. Dyes and Pigments, 2013, 99, 74-81.                                                                                                         | 2.0  | 35        |
| 146 | Large-grained perovskite films via FA x MA 1â^'x Pb(I x Br 1â^'x ) 3 single crystal precursor for efficient<br>solar cells. Nano Energy, 2017, 34, 264-270.                                                                                                      | 8.2  | 35        |
| 147 | Tetraphenylbutadiene-Based Symmetric 3D Hole-Transporting Materials for Perovskite Solar Cells: A<br>Trial Trade-off between Charge Mobility and Film Morphology. ACS Applied Materials & Interfaces,<br>2020, 12, 21088-21099.                                  | 4.0  | 35        |
| 148 | Bright Cyanâ€Emissive Copper(I)â€Halide Single Crystals for Multiâ€Functional Applications. Advanced<br>Optical Materials, 2022, 10, .                                                                                                                           | 3.6  | 35        |
| 149 | Iron-assisted engineering of molybdenum phosphide nanowires on carbon cloth for efficient<br>hydrogen evolution in a wide pH range. Journal of Materials Chemistry A, 2017, 5, 22790-22796.                                                                      | 5.2  | 34        |
| 150 | Constructing CsPbBr <sub>x</sub> I <sub>3â<sup>~?</sup>x</sub> nanocrystal/carbon nanotube composites with<br>improved charge transfer and light harvesting for enhanced photoelectrochemical activity. Journal<br>of Materials Chemistry A, 2019, 7, 5409-5415. | 5.2  | 34        |
| 151 | The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway toward Highâ€Performance<br>Optoelectronic Devices. Advanced Energy Materials, 2020, 10, 1902256.                                                                                        | 10.2 | 34        |
| 152 | Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance. Dyes and Pigments, 2013, 99, 299-307.                                                                                                                   | 2.0  | 33        |
| 153 | Influence of spatial arrangements of ï€-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells. Organic Electronics, 2013, 14, 2662-2672.                                                                              | 1.4  | 33        |
| 154 | Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide.<br>Inorganic Chemistry, 2022, 61, 338-345.                                                                                                                         | 1.9  | 33        |
| 155 | Facile Fabrication of Hierarchical SnO <sub>2</sub> Microspheres Film on Transparent FTO Glass.<br>Inorganic Chemistry, 2010, 49, 1679-1686.                                                                                                                     | 1.9  | 32        |
| 156 | Novel organic dyes incorporating a carbazole or dendritic 3,6-diiodocarbazole unit for efficient dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 269-277.                                                                                              | 2.0  | 32        |
| 157 | Porous ZnO@ZnSe nanosheet array for photoelectrochemical reduction of CO2. Electrochimica Acta, 2018, 274, 298-305.                                                                                                                                              | 2.6  | 32        |
| 158 | Bladeâ€coating Perovskite Films with Diverse Compositions for Efficient Photovoltaics. Energy and Environmental Materials, 2021, 4, 277-283.                                                                                                                     | 7.3  | 31        |
| 159 | Stable organic dyes based on the benzo[1,2-b:4,5-bâ€2]dithiophene donor for efficient dye-sensitized solar<br>cells. Journal of Materials Chemistry A, 2015, 3, 8083-8090.                                                                                       | 5.2  | 30        |
| 160 | Nonplanar Organic Sensitizers Featuring a Tetraphenylethene Structure and Double<br>Electron-Withdrawing Anchoring Groups. Journal of Organic Chemistry, 2015, 80, 9034-9040.                                                                                    | 1.7  | 30        |
| 161 | Hydrophobic Hole-Transporting Materials Incorporating Multiple Thiophene Cores with Long Alkyl<br>Chains for Efficient Perovskite Solar Cells. Electrochimica Acta, 2016, 209, 529-540.                                                                          | 2.6  | 29        |
| 162 | Fabrication of a double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye-sensitized solar cells. RSC Advances, 2013, 3, 13804.                                                                                               | 1.7  | 28        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Synthesis of FeS2 and Co-doped FeS2 films with the aid of supercritical carbon dioxide and their photoelectrochemical properties. RSC Advances, 2011, 1, 255.                                                  | 1.7 | 27        |
| 164 | Highly Catalytic Carbon Nanotube/Pt Nanohybridâ€Based Transparent Counter Electrode for Efficient<br>Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1795-1802.                            | 1.7 | 27        |
| 165 | Starburst triarylamine based dyes bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11909.                                  | 1.3 | 26        |
| 166 | Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide<br>nanotube arrays for enhanced photoelectrochemical activity. Journal of Power Sources, 2015, 274,<br>464-470. | 4.0 | 26        |
| 167 | D-A-ï€-A organic sensitizers containing a benzothiazole moiety as an additional acceptor for use in<br>solar cells. Science China Chemistry, 2013, 56, 505-513.                                                | 4.2 | 25        |
| 168 | Impact of the position isomer of the linkage in the double D–A branch-based organic dyes on the photovoltaic performance. Dyes and Pigments, 2014, 104, 89-96.                                                 | 2.0 | 25        |
| 169 | Understanding the charge transport properties of redox active metal–organic conjugated wires.<br>Chemical Science, 2018, 9, 3438-3450.                                                                         | 3.7 | 25        |
| 170 | Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells. Electrochimica Acta, 2015, 174, 494-501.                                                     | 2.6 | 24        |
| 171 | Dyeâ€Sensitized Solar Cells with Improved Performance using <i>Cone</i> â€Calix[4]Arene Based Dyes.<br>ChemSusChem, 2015, 8, 280-287.                                                                          | 3.6 | 24        |
| 172 | Novel Ga-doped, self-supported, independent aligned ZnO nanorods: one-pot hydrothermal synthesis and structurally enhanced photocatalytic performance. RSC Advances, 2011, 1, 1691.                            | 1.7 | 23        |
| 173 | Synthesis and photovoltaic performance of asymmetric di-anchoring organic dyes. Dyes and Pigments, 2015, 122, 13-21.                                                                                           | 2.0 | 22        |
| 174 | High Photoluminescence Quantum Yield (>95%) of MAPbBr <sub>3</sub> Nanocrystals via<br>Reprecipitation from Methylamine-MAPbBr <sub>3</sub> Liquid. ACS Applied Electronic Materials, 2020,<br>2, 2707-2715.   | 2.0 | 22        |
| 175 | Synchronous surface and bulk composition management for red-shifted light absorption and suppressed interfacial recombination in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 9743-9752. | 5.2 | 22        |
| 176 | Novel carbazole based sensitizers for efficient dye-sensitized solar cells: Role of the hexyl chain. Dyes and Pigments, 2015, 114, 18-23.                                                                      | 2.0 | 21        |
| 177 | Hierarchical ZnO nanorod-on-nanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Science China Materials, 2016, 59, 807-816.                                                     | 3.5 | 21        |
| 178 | Simple hole-transporting materials containing twin-carbazole moiety and unconjugated flexible linker for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 405, 126434.         | 6.6 | 21        |
| 179 | A laminar MAPbBr3/MAPbBr3â^'xlx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. Journal of Materials Chemistry C, 2019, 7, 5670-5676.                     | 2.7 | 20        |
| 180 | Aâ€Site Diamine Cation Anchoring Enables Efficient Charge Transfer and Suppressed Ion Migration in<br>Biâ€Based Hybrid Perovskite Single Crystals. Angewandte Chemie - International Edition, 2022, 61, .      | 7.2 | 20        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | 3,4â€Phenylenedioxythiophene (PheDOT) Based Holeâ€Transporting Materials for Perovskite Solar Cells.<br>Chemistry - an Asian Journal, 2016, 11, 1043-1049.                                                                | 1.7 | 19        |
| 182 | Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Science China Materials, 2022, 65, 1550-1559.                                                          | 3.5 | 19        |
| 183 | Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting<br>Diodes. ACS Nano, 2022, 16, 8388-8398.                                                                                      | 7.3 | 19        |
| 184 | Continuous Formation of Supported Unusual Mesostructured Silica Films by Solâ^'Gel Dip Coating.<br>Langmuir, 2002, 18, 9570-9573.                                                                                         | 1.6 | 18        |
| 185 | In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient<br>quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2017, 343, 148-155.                         | 4.0 | 18        |
| 186 | Constructing a Cs <sub>3</sub> Sb <sub>2</sub> Br <sub>9</sub> /g <sub>3</sub> N <sub>4</sub> Hybrid<br>for Photocatalytic Aromatic C( <i>sp</i> <sup>3</sup> )H Bond Activation. Solar Rrl, 2021, 5, 2100559.           | 3.1 | 18        |
| 187 | Fabrication of partially crystalline TiO2 nanotube arrays using 1, 2-propanediol electrolytes and application in dye-sensitized solar cells. Advanced Powder Technology, 2013, 24, 175-182.                               | 2.0 | 17        |
| 188 | 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimonyâ€Đoped Tin Oxide for<br>Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 3012-3018.                                                    | 3.6 | 17        |
| 189 | CdS/CdSe co-sensitized hierarchical TiO <sub>2</sub> nanofiber/ZnO nanosheet heterojunction photoanode for quantum dot-sensitized solar cells. RSC Advances, 2016, 6, 78202-78209.                                        | 1.7 | 16        |
| 190 | Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications. Accounts of Chemical Research, 2019, 52, 633-644.                                                                 | 7.6 | 16        |
| 191 | Ruthenium dyes with heteroleptic tridentate 2,6-bis(benzimidazol-2-yl)-pyridine for dye-sensitized solar cells: Enhancement in performance through structural modifications. Inorganica Chimica Acta, 2012, 392, 388-395. | 1.2 | 15        |
| 192 | Bifacial Contact Junction Engineering for Highâ€Performance Perovskite Solar Cells with Efficiency<br>Exceeding 21%. Small, 2019, 15, 1900606.                                                                            | 5.2 | 15        |
| 193 | Emissionâ€Colorâ€Tunable Pbâ^'Sn Alloyed Single Crystals with High Luminescent Efficiency and Stability.<br>Advanced Optical Materials, 2022, 10, .                                                                       | 3.6 | 15        |
| 194 | Coordination disk-type nano-Saturn complexes. Chemical Communications, 2020, 56, 3325-3328.                                                                                                                               | 2.2 | 14        |
| 195 | Zeroâ€Dimensional Znâ€Based Halides with Ultraâ€Long Roomâ€Temperature Phosphorescence for<br>Timeâ€Resolved Antiâ€Counterfeiting. Angewandte Chemie, 2022, 134, .                                                        | 1.6 | 14        |
| 196 | Fabrication of ordered macroporous rutile titania at low temperature. New Journal of Chemistry, 2002, 26, 819-821.                                                                                                        | 1.4 | 13        |
| 197 | A Mild Oneâ€Step Process from Graphene Oxide and Cd <sup>2+</sup> to a Graphene–CdSe Quantum Dot Nanocomposite with Enhanced Photoelectric Properties. ChemPhysChem, 2012, 13, 2654-2658.                                 | 1.0 | 13        |
| 198 | Synthesis and photovoltaic performance of dihydrodibenzoazepine-based sensitizers with additional<br>lateral anchor. Dyes and Pigments, 2013, 99, 1072-1081.                                                              | 2.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Hierarchical tree-like heterostructure arrays for enhanced photoeletrochemical activity.<br>Electrochimica Acta, 2014, 136, 217-222.                                                                                                                                                                | 2.6  | 13        |
| 200 | Cooperative effects of Dopant-Free Hole-Transporting materials and polycarbonate film for sustainable perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135197.                                                                                                                      | 6.6  | 13        |
| 201 | Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution. RSC Advances, 2013, 3, 19311.                                                                                                                                | 1.7  | 12        |
| 202 | A facile method to fabricate high-quality perovskite nanocrystals based on single crystal powder.<br>Nano Research, 2019, 12, 2640-2645.                                                                                                                                                            | 5.8  | 12        |
| 203 | Rational Surface Engineering of Anatase Titania Core–Shell Nanowire Arrays: Full-Solution Processed<br>Synthesis and Remarkable Photovoltaic Performance. ACS Applied Materials & Interfaces, 2014, 6,<br>19100-19108.                                                                              | 4.0  | 11        |
| 204 | Ni x S y /NiSe 2 Hybrid Catalyst Grown In Situ on Conductive Glass Substrate as Efficient Counter<br>Electrode for Dye-Sensitized Solar Cells. Electrochimica Acta, 2017, 250, 244-250.                                                                                                             | 2.6  | 11        |
| 205 | In Situ Construction of Direct Zâ€6cheme Cs <sub><i>x</i></sub> WO <sub>3</sub> /CsPbBr <sub>3</sub><br>Heterojunctions via Cosharing Cs Atom. Solar Rrl, 2021, 5, 2100036.                                                                                                                         | 3.1  | 11        |
| 206 | Making nanometer thick silica glass scaffolds: an experimental approach to learn about size effects in glasses. Colloid and Polymer Science, 2004, 282, 892-900.                                                                                                                                    | 1.0  | 10        |
| 207 | Layered-stacking of titania films for solar energy conversion: Toward tailored optical, electronic and photovoltaic performance. Journal of Energy Chemistry, 2018, 27, 690-702.                                                                                                                    | 7.1  | 10        |
| 208 | Engineering multinary heterointerfaces in two-dimensional cobalt molybdenum phosphide hybrid<br>nanosheets for efficient electrocatalytic water splitting. Sustainable Energy and Fuels, 2021, 5,<br>3458-3466.                                                                                     | 2.5  | 9         |
| 209 | Multichromophoric di-anchoring sensitizers incorporating a ruthenium complex and an organic<br>triphenyl amine dye for efficient dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2015, 2,<br>1040-1044.                                                                                  | 3.0  | 7         |
| 210 | Hierarchical TiO <sub>2</sub> –B/anatase core/shell nanowire arrays for efficient dye-sensitized solar<br>cells. RSC Advances, 2016, 6, 1288-1295.                                                                                                                                                  | 1.7  | 6         |
| 211 | Recent Advances in Halide Perovskite Singleâ€Crystal Thin Films: Fabrication Methods and<br>Optoelectronic Applications (Solar RRL 4â^•2019). Solar Rrl, 2019, 3, 1970044.                                                                                                                          | 3.1  | 5         |
| 212 | 0D/2D CsPbBr <sub>3</sub> Nanocrystal/BiOCl Nanoplate Heterostructure with Enhanced<br>Photocatalytic Performance. Advanced Materials Interfaces, 2022, 9, .                                                                                                                                        | 1.9  | 3         |
| 213 | Optoelectronic Devices: The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway<br>toward Highâ€Performance Optoelectronic Devices (Adv. Energy Mater. 7/2020). Advanced Energy<br>Materials, 2020, 10, 2070029.                                                                    | 10.2 | 1         |
| 214 | Aâ€Site Diamine Cation Anchoring Enables Efficient Charge Transfer and Suppressed Ion Migration in<br>Biâ€based Hybrid Perovskite Single Crystals. Angewandte Chemie, 0, , .                                                                                                                        | 1.6  | 1         |
| 215 | Water Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a<br>TiCl <sub>4</sub> Treated 3D Antimonyâ€Doped SnO <sub>2</sub> Macropore/Branched<br>αâ€Fe <sub>2</sub> O <sub>3</sub> Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015). Advanced<br>Science. 2015. 2 | 5.6  | 0         |