
Reuven Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84852/publications.pdf Version: 2024-02-01

RELIVEN CHEN

#	Article	IF	CITATIONS
1	On the various-heating-rates method for evaluating the activation energies of thermoluminescence peaks. Radiation Measurements, 2022, 150, 106692.	1.4	4
2	Effect of radiation physics on inherent statistics of glow curves from small samples or low doses. Radiation Measurements, 2022, 151, 106698.	1.4	3
3	Thermoluminescence due to simultaneous recombination of two electrons into two-hole centers. Radiation Measurements, 2021, 141, 106521.	1.4	0
4	A model explaining the inability of exciting thermoluminescence (TL) peaks in certain low temperature ranges. Radiation Measurements, 2021, 145, 106610.	1.4	3
5	Superlinearity revisited: A new analytical equation for the dose response of defects in solids, using the Lambert W function. Journal of Luminescence, 2020, 227, 117553.	3.1	11
6	Inherent statistics of glow curves from small samples and single grains. Journal of Luminescence, 2020, 226, 117389.	3.1	2
7	Competition between long time excitation and fading of thermoluminescence (TL) and optically stimulated luminescence (OSL). Radiation Measurements, 2020, 136, 106422.	1.4	7
8	A Monte-Carlo study of the fading of TL and OSL signals in the presence of deep-level competitors. Radiation Measurements, 2020, 132, 106257.	1.4	3
9	A new analytical equation for the dose response of dosimetric materials, based on the Lambert W function. Journal of Luminescence, 2020, 225, 117333.	3.1	18
10	CONDUCTION BAND-VALENCE BAND THEORY OF TL AND OSL: EMPHASIS ON DELOCALIZED TRANSITIONS AND EXPLANATION ON SOME UNUSUAL EFFECTS. Radiation Protection Dosimetry, 2020, 192, 178-195.	0.8	1
11	Thermoluminescence governed by the Auger-recombination process. Radiation Measurements, 2019, 124, 40-47.	1.4	3
12	Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence, 2019, 207, 266-272.	3.1	14
13	Recent Advances in the Theory of Thermoluminescence and Optically Stimulated Luminescence; Delocalized Transitions. , 2019, , 1-36.		0
14	Thermoluminescence associated with two-hole recombination centers. Radiation Measurements, 2018, 115, 1-6.	1.4	8
15	An overview of recent developments in luminescence models with a focus on localized transitions. Radiation Measurements, 2017, 106, 3-12.	1.4	23
16	Thermoluminescence associated with two-electron traps. Radiation Measurements, 2017, 99, 10-17.	1.4	6
17	Quartz radiofluorescence: a modelling approach. Journal of Luminescence, 2017, 186, 318-325.	3.1	12
18	A model explaining the anomalous heating-rate effect in thermoluminescence as an inverse thermal quenching based on simultaneous thermal release of electrons and holes. Radiation Measurements, 2017, 106, 20-25.	1.4	29

#	Article	IF	CITATIONS
19	Thermoluminescence Theory and Analysis: Advances and Impact on Applications. , 2017, , 444-451.		4
20	Evaluated thermoluminescence trapping parameters–What do they really mean?. Radiation Measurements, 2016, 91, 21-27.	1.4	60
21	Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements, 2015, 81, 224-231.	1.4	66
22	Study of the stability of the TL and OSL signals. Radiation Measurements, 2015, 81, 192-197.	1.4	6
23	OSL-thermochronometry of feldspar from the KTB borehole, Germany. Earth and Planetary Science Letters, 2015, 423, 232-243.	4.4	59
24	Time and dose-rate dependence of TL and OSL due to competition between excitation and fading. Radiation Measurements, 2015, 82, 115-121.	1.4	10
25	Monte Carlo simulations of TL and OSL in nanodosimetric materials and feldspars. Radiation Measurements, 2015, 81, 262-269.	1.4	13
26	Thermal dependence of luminescence lifetimes and radioluminescence in quartz. Journal of Luminescence, 2014, 145, 38-48.	3.1	32
27	The role of simulations in the study of thermoluminescence (TL). Radiation Measurements, 2014, 71, 8-14.	1.4	22
28	Intrinsic superlinear dose dependence of thermoluminescence and optically stimulated luminescence at high excitation dose rates. Radiation Measurements, 2014, 71, 220-225.	1.4	4
29	On the expected order of kinetics in a series of thermoluminescence (TL) and thermally stimulated conductivity (TSC) peaks. Nuclear Instruments & Methods in Physics Research B, 2013, 312, 60-69.	1.4	22
30	Modeling TL-like thermally assisted optically stimulated luminescence (TA-OSL). Radiation Measurements, 2013, 56, 6-12.	1.4	6
31	On the quasi-equilibrium assumptions in the theory of thermoluminescence (TL). Journal of Luminescence, 2013, 143, 734-740.	3.1	14
32	Thermal dependence of time-resolved blue light stimulated luminescence in α-Al2O3:C. Journal of Luminescence, 2013, 136, 270-277.	3.1	14
33	Optimal algorithms for the α-neighbor p-center problem. European Journal of Operational Research, 2013, 225, 36-43.	5.7	17
34	Two-stage thermal stimulation of thermoluminescence. Radiation Measurements, 2012, 47, 809-813.	1.4	46
35	Modeling of the shape of infrared stimulated luminescence signals in feldspars. Radiation Measurements, 2012, 47, 870-876.	1.4	17
36	Superlinear dose response of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals in luminescence materials: An analytical approach. Journal of Luminescence, 2012, 132, 1446-1455.	3.1	10

#	Article	IF	CITATIONS
37	Time-resolved infrared stimulated luminescence signals in feldspars: Analysis based on exponential and stretched exponential functions. Journal of Luminescence, 2012, 132, 2330-2340.	3.1	18
38	On the intrinsic accuracy and precision of luminescence dating techniques for fired ceramics. Journal of Archaeological Science, 2011, 38, 1591-1602.	2.4	19
39	A model for explaining the concentration quenching of thermoluminescence. Radiation Measurements, 2011, 46, 1380-1384.	1.4	69
40	Simulations of time-resolved photoluminescence experiments in α-Al2O3:C. Journal of Luminescence, 2011, 131, 1086-1094.	3.1	27
41	Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz. Journal of Luminescence, 2011, 131, 1827-1835.	3.1	17
42	Optical properties of some fluoride compounds and their application to dosimetry. Radiation Measurements, 2010, 45, 566-568.	1.4	2
43	Nonlinear dose dependence of TL and LM-OSL within the one trap-one center model. Radiation Measurements, 2010, 45, 277-280.	1.4	7
44	On the initial-occupancy dependence of some luminescence phenomena under the one-trap-one-recombination-center (OTOR) model. Radiation Measurements, 2010, 45, 147-150.	1.4	3
45	Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence. Journal of Luminescence, 2010, 130, 902-909.	3.1	69
46	A relaxation-based algorithm for solving the conditional -center problem. Operations Research Letters, 2010, 38, 215-217.	0.7	16
47	Radioluminescence in Al ₂ O ₃ : C – analytical and numerical simulation results. Journal Physics D: Applied Physics, 2009, 42, 175107.	2.8	23
48	On the theoretical basis for the duplicitous thermoluminescence peak. Journal Physics D: Applied Physics, 2009, 42, 155409.	2.8	15
49	Simulations of thermally transferred OSL experiments and of the ReSAR dating protocol for quartz. Radiation Measurements, 2009, 44, 634-638.	1.4	13
50	A new look at the linear-modulated optically stimulated luminescence (LM-OSL) as a tool for dating and dosimetry. Radiation Measurements, 2009, 44, 344-350.	1.4	10
51	New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems. Computers and Operations Research, 2009, 36, 1646-1655.	4.0	48
52	Optically stimulated exoelectron emission processes in quartz: comparison of experiment and theory. Journal of Luminescence, 2009, 129, 1003-1009.	3.1	12
53	Sublinear dose dependence of thermoluminescence and optically stimulated luminescence prior to the approach to saturation level. Radiation Measurements, 2009, 44, 606-610.	1.4	31
54	Thermoluminescence of some doped fluoride crystals. Radiation Measurements, 2008, 43, 245-248.	1.4	14

#	Article	IF	CITATIONS
55	Thermoluminescence glowâ€peak shape methods based on mixed order kinetics. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1181-1189.	1.8	51
56	Duplicitous thermoluminescence peak associated with a thermal release of electrons and holes from trapping states. Radiation Measurements, 2008, 43, 162-166.	1.4	9
57	A quantitative kinetic model for Al2O3:C: TL response to UV-illumination. Radiation Measurements, 2008, 43, 175-179.	1.4	12
58	A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements, 2008, 43, 704-708.	1.4	45
59	Simulation of OSL Pulse-Annealing at Different Heating Rates: Conclusions Concerning the Evaluated Trapping Parameters and Lifetimes. Geochronometria, 2008, 30, 1-7.	0.8	4
60	Modelling thermal transfer in optically stimulated luminescence of quartz. Journal Physics D: Applied Physics, 2007, 40, 998-1006.	2.8	24
61	A quantitative kinetic model for Al2O3:C: TL response to ionizing radiation. Radiation Measurements, 2007, 42, 198-204.	1.4	32
62	Simulations of the effect of pulse annealing on optically-stimulated luminescence of quartz. Radiation Measurements, 2007, 42, 1587-1599.	1.4	15
63	Irradiation effects in BaF2:CuCl2 and BaF2:Mn,Ce crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1110-1113.	0.8	2
64	Superlinear dose dependence of high temperature thermoluminescence peaks in Al2O3:C. Radiation Protection Dosimetry, 2006, 119, 71-74.	0.8	14
65	Dose Dependence of Thermoluminescence (TL) and Optically Stimulated Luminescence with Uniform Excitation. , 2006, , 253-330.		Ο
66	Comparison of experimental and modelled quartz thermal-activation curves obtained using multiple- and single-aliquot procedures. Radiation Measurements, 2006, 41, 910-916.	1.4	12
67	Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout. Radiation Measurements, 2006, 41, 903-909.	1.4	25
68	Effects of photostimulation in natural zircon. Radiation Measurements, 2006, 41, 961-966.	1.4	1
69	Theoretical modelling of experimental diagnostic procedures employed during pre-dose dosimetry of quartz. Radiation Protection Dosimetry, 2006, 119, 111-114.	0.8	7
70	A comprehensive comparative study of the predose effect for three quartz crystals of different origin. Radiation Protection Dosimetry, 2006, 119, 438-441.	0.8	17
71	Optical and dosimetric properties of zircon. Radiation Protection Dosimetry, 2006, 119, 267-270.	0.8	3
72	Non-monotonic dose dependence of thermoluminescence. Radiation Protection Dosimetry, 2006, 119, 33-36.	0.8	27

#	Article	IF	CITATIONS
73	Thermoluminescence under an exponential heating function: II. Glow-curve deconvolution of experimental glow-curves. Journal Physics D: Applied Physics, 2006, 39, 1508-1514.	2.8	21
74	Thermoluminescence under an exponential heating function: I. Theory. Journal Physics D: Applied Physics, 2006, 39, 1500-1507.	2.8	25
75	Defects induced in fluorides and oxides by VUV radiation. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 409-412.	0.8	5
76	A model for non-monotonic dose dependence of thermoluminescence (TL). Journal of Physics Condensed Matter, 2005, 17, 737-753.	1.8	37
77	X-Ray Storage Luminescence of BaFCl:Eu2+ Single Crystals. Journal of Physical Chemistry B, 2005, 109, 11505-11511.	2.6	22
78	Optical and dosimetric properties of variously doped SrF2 crystals. Radiation Measurements, 2004, 38, 719-722.	1.4	12
79	The decay of OSL signals as stretched-exponential functions. Radiation Measurements, 2003, 37, 519-526.	1.4	45
80	Applicability of the Zimmerman predose model in the thermoluminescence of predosed and annealed synthetic quartz samples. Radiation Measurements, 2003, 37, 267-274.	1.4	36
81	Developments in Luminescence and Display Materials Over the Last 100 Years as Reflected in Electrochemical Society Publications [Journal of the Electrochemical Society, 149, S69 (2002)]. Journal of the Electrochemical Society, 2003, 150, L8.	2.9	Ο
82	Luminescence of CsGd2F7 Crystals. Radiation Protection Dosimetry, 2002, 100, 207-209.	0.8	9
83	The Role of Retrapping in Dose Dependence of Pulsed Optically Stimulated Luminescence. Radiation Protection Dosimetry, 2002, 100, 71-74.	0.8	4
84	Radiation effects in KMgF 3 crystals. Radiation Effects and Defects in Solids, 2002, 157, 583-588.	1.2	5
85	The analysis of thermoluminescent glow peaks of CaF2: Dy (TLD-200) after Â-irradiation. Journal Physics D: Applied Physics, 2002, 35, 2526-2535.	2.8	64
86	Developments in Luminescence and Display Materials Over the Last 100 Years as Reflected in Electrochemical Society Publications. Journal of the Electrochemical Society, 2002, 149, S69.	2.9	58
87	Nonlinear dose dependence and dose-rate dependence of optically stimulated luminescence and thermoluminescence. Radiation Measurements, 2001, 33, 475-481.	1.4	48
88	Luminescence of LiKYF5:Pr3+ crystals. Radiation Measurements, 2001, 33, 637-640.	1.4	17
89	Study of optical and dosimetric properties of doped fluoride crystals. Optical Materials, 2001, 16, 105-110.	3.6	10
90	Dose dependence and dose-rate dependence of the optically stimulated luminescence signal. Journal of Applied Physics, 2001, 89, 259-263.	2.5	18

#	Article	IF	CITATIONS
91	Apparent anomalous fading of thermoluminescence associated with competition with radiationless transitions. Radiation Measurements, 2000, 32, 505-511.	1.4	20
92	A model for dose-rate dependence of thermoluminescence intensity. Journal Physics D: Applied Physics, 2000, 33, 846-850.	2.8	28
93	Phototransferred Thermoluminescence of CaWO4 Crystals. Radiation Protection Dosimetry, 1999, 84, 131-133.	0.8	8
94	Luminescence of BaFCI: Eu ²⁺ and SrFCI : Eu ²⁺ . Radiation Effects and Defects in Solids, 1999, 150, 65-70.	1.2	4
95	Modeling the Pre-Dose Effect in Thermoluminescence. Radiation Protection Dosimetry, 1999, 84, 43-46.	0.8	31
96	Accelerating convergence in the Fermat–Weber location problem. Operations Research Letters, 1998, 22, 151-157.	0.7	32
97	Evaluation of parameters from thermal desorption spectra – methods borrowed from the analysis of thermoluminescence. Surface Science, 1998, 400, 258-265.	1.9	11
98	Sensitization and desensitization of the luminescence yield of Al2O3: C. Radiation Effects and Defects in Solids, 1998, 146, 237-241.	1.2	2
99	Processes of sensitization of thermoluminescence in insulators. Journal Physics D: Applied Physics, 1998, 31, 2628-2635.	2.8	19
100	Pre-Exponential Factor in General Order Kinetics of Thermoluminescence and its Influence on Glow Curves. Radiation Protection Dosimetry, 1997, 71, 93-97.	0.8	11
101	A new possible interpretation of the anomalous fading in thermoluminescent materials as normal fading in disguise. Radiation Measurements, 1997, 27, 205-210.	1.4	27
102	Luminescence models. Radiation Measurements, 1997, 27, 625-661.	1.4	203
103	Spectral Dependence of Optical Bleaching of PTTL in Quartz. Radiation Protection Dosimetry, 1996, 65, 69-72.	0.8	0
104	Interpretation of Very High Activation Energies and Frequency Factors in TL as Being Due to Competition Between Centres. Radiation Protection Dosimetry, 1996, 65, 17-20.	0.8	47
105	A New Look at the Models of the Superlinear Dose Dependence of Thermoluminescence. Radiation Protection Dosimetry, 1996, 65, 63-68.	0.8	42
106	Studies of excitation, optical bleaching and thermal annealing of OSL in natural quartz. Journal Physics D: Applied Physics, 1996, 29, 1047-1050.	2.8	2
107	Explanation of the superlinear behaviour of thermoluminescence by considering the residual holes in the recombination centres before irradiation. Journal Physics D: Applied Physics, 1995, 28, 408-414.	2.8	11
108	Characterization of nonlinearities in the dose dependence of thermoluminescence. Radiation Measurements, 1994, 23, 667-673.	1.4	85

#	Article	IF	CITATIONS
109	Theoretical account of the sensitization and de-sensitization in quartz. Radiation Measurements, 1994, 23, 277-279.	1.4	13
110	The conditionalp-center problem in the plane. Naval Research Logistics, 1993, 40, 117-127.	2.2	26
111	Photoluminescence of mixed AgCl0.45Br0.55crystals. Journal Physics D: Applied Physics, 1993, 26, 1759-1763.	2.8	2
112	Supralinearity in Thermoluminescence Revisited. Radiation Protection Dosimetry, 1993, 47, 23-26.	0.8	33
113	A One Trap, Two Luminescence Centre TL Model. Radiation Protection Dosimetry, 1993, 47, 17-22.	0.8	1
114	Supralinearity in Thermoluminescence Revisited. Radiation Protection Dosimetry, 1993, 47, 23-26.	0.8	16
115	Phototransfer Studies in Synthetic Quartz. Radiation Protection Dosimetry, 1993, 47, 37-40.	0.8	0
116	Thermoluminescence characteristics of the 375 °C electron trap in quartz. Physical Review B, 1992, 46, 8036-8049.	3.2	49
117	Sensitization of thermoluminescence in synthetic quartz — heat treatment and radiation effects. Journal of Luminescence, 1991, 48-49, 833-837.	3.1	8
118	Thermoluminescent relaxation of stable systems. Journal of Luminescence, 1990, 46, 251-259.	3.1	4
119	Competition between excitation and bleaching of thermoluminescence. Journal Physics D: Applied Physics, 1990, 23, 724-728.	2.8	29
120	The Variation of TL Properties of Synthetic Quartz by Thermal Annealing. Radiation Protection Dosimetry, 1990, 33, 193-195.	0.8	1
121	Thermoluminescence and phosphorescence with a continuous distribution of activation energies. Journal of Luminescence, 1989, 44, 73-81.	3.1	68
122	Thermoluminescent properties of mica. International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and Radiation Measurements, 1988, 14, 101-104.	0.5	18
123	The Application of Thermally Stimulated Processes to the Study of Defects in Perovskite Type Fluorides. Physica Status Solidi (B): Basic Research, 1988, 149, 45-54.	1.5	12
124	The strongly superlinear dose dependence of thermoluminescence in synthetic quartz. Journal Physics D: Applied Physics, 1988, 21, 1452-1457.	2.8	99
125	Conditional Minisum and Minimax Location-Allocation Problems in Euclidean Space. Transportation Science, 1988, 22, 157-160.	4.4	20
126	Relaxation method for the solution of the minimax location-allocation problem in euclidean space. Naval Research Logistics, 1987, 34, 775-788.	2.2	24

#	Article	IF	CITATIONS
127	Thermoluminescence kinetics for multipeak glow curves produced by the release of electrons and holes. Journal Physics D: Applied Physics, 1986, 19, 1321-1334.	2.8	38
128	Investigation of Phosphorescence Decay Using TL-like Presentation. Radiation Protection Dosimetry, 1986, 17, 443-446.	0.8	17
129	Investigation of Phosphorescence Decay Using TL-like Presentation. Radiation Protection Dosimetry, 1986, 17, 443-446.	0.8	6
130	Solution of minimax problems using equivalent differentiable functions. Computers and Mathematics With Applications, 1985, 11, 1165-1169.	2.7	16
131	Numerical solutions to the rate equations governing the simultaneous release of electrons and holes during thermoluminescence and isothermal decay. Physical Review B, 1985, 32, 3835-3843.	3.2	34
132	Optimal location of a service facility as a problem in basic mechanics. American Journal of Physics, 1985, 53, 59-62.	0.7	2
133	Radiation effects in polarized electrets – applications to radiation dosimetry. Radiation Effects, 1984, 83, 161-183.	0.4	3
134	Solution of location problems with radial cost functions. Computers and Mathematics With Applications, 1984, 10, 87-94.	2.7	33
135	Location problems with costs being sums of powers of euclidean distances. Computers and Operations Research, 1984, 11, 285-294.	4.0	24
136	Thermoluminescence Governed by Simultaneous Thermal Stimulation of Electrons and Holes. Physica Status Solidi (B): Basic Research, 1984, 126, 361-369.	1.5	13
137	Analysis of Thermoluminescence Data Dominated by Second-Order Kinetics. Physica Status Solidi A, 1983, 79, 251-261.	1.7	41
138	Solution of minisum and minimax location–allocation problems with Euclidean distances. Naval Research Logistics Quarterly, 1983, 30, 449-459.	0.4	53
139	On the order of kinetics in the study of thermoluminescence. Journal Physics D: Applied Physics, 1983, 16, L107-L114.	2.8	20
140	More on writing. Physics Today, 1982, 35, 132-134.	0.3	0
141	Mixed first and second order kinetics in thermally stimulated processes. Journal of Luminescence, 1981, 23, 293-303.	3.1	85
142	Solution of the kinetic equations governing trap filling. Consequences concerning dose dependence and dose-rate effects. Physical Review B, 1981, 24, 4931-4944.	3.2	72
143	Dose-rate dependence of thermoluminescence response. Nuclear Instruments & Methods, 1980, 175, 43-44.	1.2	19
144	Correlation between simultaneous thermally stimulated conductivity and thermoluminescence transientsâ€experimental case of stannic oxide monocrystals. Journal of Applied Physics, 1979, 50, 4345-4349.	2.5	8

Reuven Chen

#	Article	IF	CITATIONS
145	Superlinear filling of traps in crystals due to competition during irradiation. Journal of Luminescence, 1979, 18-19, 345-348.	3.1	26
146	Vacuum ultra-violet induced thermoluminescence in Î ³ -irradiated and non-irradiated MgO powder. Philosophical Magazine and Journal, 1977, 35, 653-661.	1.7	13
147	On the analysis of thermally stimulated processes. Journal of Electrostatics, 1977, 3, 15-24.	1.9	53
148	Methods for kinetic analysis of thermally stimulated processes. Journal of Materials Science, 1976, 11, 1521-1541.	3.7	196
149	Excitation and preâ€excitation of glow curves in natural semiconducting diamonds. Journal of Chemical Physics, 1974, 60, 4804-4809.	3.0	5
150	The computation of the exponential integral as related to the analysis of thermal processes. Journal of Thermal Analysis, 1974, 6, 585-586.	0.6	13
151	Dose dependence of thermoluminescence peaks. Journal Physics D: Applied Physics, 1974, 7, 1063-1072.	2.8	84
152	On the analysis of thermal desorption curves. Surface Science, 1974, 43, 657-661.	1.9	15
153	On the relation between thermally stimulated conductivity and thermoluminescence maxima. Journal of Applied Physics, 1973, 44, 1393-1394.	2.5	10
154	Application of Thermoluminescence Theory to the Investigation of Thermoremanent Magnetization Curves. Australian Journal of Physics, 1973, 26, 249.	0.6	3
155	Effects of Competition in the Stabilization of Point Defects. Physical Review B, 1972, 6, 4861-4867.	3.2	13
156	Numerical solution of the glow curve differential equations. Journal of Computational Physics, 1972, 10, 272-283.	3.8	56
157	Simultaneous Measurement of Thermally Stimulated Conductivity and Thermoluminescence. Journal of Applied Physics, 1971, 42, 5899-5901.	2.5	35
158	On the remainder of truncated asymptotic series. Journal of Computational Physics, 1971, 8, 156-161.	3.8	9
159	Generalization of a method for calculating activation energies of glow curves. Chemical Physics Letters, 1971, 11, 371-373.	2.6	9
160	Numerical curve fitting of general order kinetics glow peaks. Journal Physics D: Applied Physics, 1971, 4, 287-291.	2.8	30
161	On the kinetics of thermally stimulated conductivity. Chemical Physics Letters, 1970, 6, 125-127.	2.6	11
162	On the computation of the generalized integral in glow curve theory. Journal of Computational Physics, 1970, 6, 314-316.	3.8	10

#	Article	IF	CITATIONS
163	Dependence of the excitation of glow curves on the absorption coefficient. Chemical Physics Letters, 1970, 7, 171-172.	2.6	8
164	Numerical curve fitting for calculating glow parameters. Journal Physics D: Applied Physics, 1970, 3, 243-247.	2.8	51
165	Effects of Various Heating Rates on Glow Curves. Journal of Applied Physics, 1970, 41, 5227-5232.	2.5	263
166	Thermally stimulated current curves with non-constant recombination lifetime. Journal Physics D: Applied Physics, 1969, 2, 371-375.	2.8	25
167	Thermoluminescence in Sodium Silicate by uv Excitation. Journal of Chemical Physics, 1969, 51, 4530-4533.	3.0	2
168	On the computation of the integral appearing in glow curve theory. Journal of Computational Physics, 1969, 4, 415-418.	3.8	21
169	Glow Curves with General Order Kinetics. Journal of the Electrochemical Society, 1969, 116, 1254.	2.9	870
170	On the Calculation of Activation Energies and Frequency Factors from Glow Curves. Journal of Applied Physics, 1969, 40, 570-585.	2.5	865
171	Calculation of glow curves' activation energies by numerical initla rise methods. Chemical Physics Letters, 1968, 2, 483-485.	2.6	31
172	Thermoluminescence of Semiconducting Diamonds. Physical Review, 1966, 148, 839-845.	2.7	81
173	Some optical properties of iodine single crystals. Journal of Physics and Chemistry of Solids, 1963, 24, 135-139.	4.0	15