List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Differences between the Lignin-Carbohydrate Complexes (LCCs) from 2- and 24-Month-Old Bamboo (Neosinocalamus affinis). International Journal of Molecular Sciences, 2018, 19, 1.	1.8	1,144
2	Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 2001, 74, 307-319.	2.7	669
3	Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials, 2013, 6, 359-391.	1.3	591
4	Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative ¹³ C and 2D HSQC NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2011, 59, 10604-10614.	2.4	483
5	Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 2019, 21, 275-283.	4.6	445
6	Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 2012, 30, 879-903.	6.0	338
7	Comparative Study of Hemicelluloses Obtained by Graded Ethanol Precipitation from Sugarcane Bagasse. Journal of Agricultural and Food Chemistry, 2009, 57, 6305-6317.	2.4	312
8	Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chemistry, 2014, 16, 181-190.	4.6	260
9	A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle. Advanced Materials, 2018, 30, e1706705.	11.1	255
10	Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chemistry, 2018, 20, 1383-1390.	4.6	250
11	Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 17478-17488.	4.0	223
12	Compressible, Elastic, and Pressure-Sensitive Carbon Aerogels Derived from 2D Titanium Carbide Nanosheets and Bacterial Cellulose for Wearable Sensors. Chemistry of Materials, 2019, 31, 3301-3312.	3.2	220
13	Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chemistry, 2017, 19, 1794-1827.	4.6	216
14	Unmasking the structural features and property of lignin from bamboo. Industrial Crops and Products, 2013, 42, 332-343.	2.5	215
15	Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catalysis, 2017, 7, 7535-7542.	5.5	198
16	Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy, 2014, 121, 1-9.	5.1	190
17	Nanocomposite Films Based on Xylan-Rich Hemicelluloses and Cellulose Nanofibers with Enhanced Mechanical Properties. Biomacromolecules, 2011, 12, 3321-3329.	2.6	188
18	Quantitative Structures and Thermal Properties of Birch Lignins after Ionic Liquid Pretreatment. Journal of Agricultural and Food Chemistry, 2013, 61, 635-645.	2.4	179

#	Article	IF	CITATIONS
19	Quantitative structural characterization of the lignins from the stem and pith of bamboo (<i>Phyllostachys pubescens</i>). Holzforschung, 2013, 67, 613-627.	0.9	170
20	A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(<scp>ii</scp>) removal. Journal of Materials Chemistry A, 2016, 4, 11888-11896.	5.2	169
21	Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chemistry, 2015, 17, 1589-1596.	4.6	157
22	Application of biochar-based catalysts in biomass upgrading: a review. RSC Advances, 2017, 7, 48793-48805.	1.7	150
23	Lignin Source and Structural Characterization. ChemSusChem, 2020, 13, 4385-4393.	3.6	150
24	From lignin subunits to aggregates: insights into lignin solubilization. Green Chemistry, 2017, 19, 3272-3281.	4.6	149
25	Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 7833-7843.	3.2	149
26	Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens. ACS Sustainable Chemistry and Engineering, 2019, 7, 2658-2666.	3.2	148
27	Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Industrial Crops and Products, 2002, 15, 179-188.	2.5	147
28	Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydrate Polymers, 2011, 86, 672-677.	5.1	143
29	Research Progress in Ligninâ€Based Slow/Controlled Release Fertilizer. ChemSusChem, 2020, 13, 4356-4366.	3.6	140
30	Quantitative Determination of Hydroxycinnamic Acids in Wheat, Rice, Rye, and Barley Straws, Maize Stems, Oil Palm Frond Fiber, and Fast-Growing Poplar Wood. Journal of Agricultural and Food Chemistry, 2001, 49, 5122-5129.	2.4	137
31	Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresource Technology, 2013, 127, 236-241.	4.8	127
32	Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): Comparative characterization of the dissolved lignins with milled wood lignin. Chemical Engineering Journal, 2012, 179, 80-89.	6.6	123
33	In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chemistry, 2020, 22, 1851-1858.	4.6	123
34	Structural Characteristics of Lignin Macromolecules from Different <i>Eucalyptus</i> Species. ACS Sustainable Chemistry and Engineering, 2017, 5, 11618-11627.	3.2	122
35	Role of lignin in a biorefinery: separation characterization and valorization. Journal of Chemical Technology and Biotechnology, 2013, 88, 346-352.	1.6	120
36	Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl). Materials, 2013, 6, 1270-1284.	1.3	114

#	Article	IF	CITATIONS
37	Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 2021, 23, 3790-3817.	4.6	114
38	A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. Journal of Materials Chemistry A, 2017, 5, 20643-20650.	5.2	113
39	Economically Competitive Biodegradable PBAT/Lignin Composites: Effect of Lignin Methylation and Compatibilizer. ACS Sustainable Chemistry and Engineering, 2020, 8, 5338-5346.	3.2	113
40	Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Biotechnology Advances, 2010, 28, 583-593.	6.0	112
41	High-Value Utilization of Lignin to Synthesize Ag Nanoparticles with Detection Capacity For Hg ²⁺ . ACS Applied Materials & Interfaces, 2014, 6, 16147-16155.	4.0	112
42	Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 2016, 200, 971-980.	4.8	112
43	Structural Elucidation of Lignin Polymers of <i>Eucalyptus</i> Chips during Organosolv Pretreatment and Extended Delignification. Journal of Agricultural and Food Chemistry, 2013, 61, 11067-11075.	2.4	109
44	Structural Characterization of Lignin from Triploid of Populus tomentosa Carr Journal of Agricultural and Food Chemistry, 2011, 59, 6605-6615.	2.4	108
45	Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems. Bioresource Technology, 2015, 183, 188-194.	4.8	105
46	Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chemical Engineering Journal, 2018, 350, 173-180.	6.6	105
47	Characterization and phenolation of biorefinery technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Advances, 2014, 4, 57996-58004.	1.7	103
48	Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. Journal of Materials Chemistry A, 2019, 7, 10273-10281.	5.2	100
49	Effect of ionic liquid/organic solvent pretreatment on the enzymatic hydrolysis of corncob for bioethanol production. Part 1: Structural characterization of the lignins. Industrial Crops and Products, 2013, 43, 570-577.	2.5	97
50	Characterization and antioxidant activity of \hat{l}^2 -carotene loaded chitosan-graft-poly(lactide) nanomicelles. Carbohydrate Polymers, 2015, 117, 169-176.	5.1	96
51	Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: Understanding the fundamental chemistry of the lignin during the integrated process. Bioresource Technology, 2013, 150, 278-286.	4.8	95
52	Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresource Technology, 2013, 138, 63-70.	4.8	92
53	Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH ₄ OH passivation. Journal of Materials Chemistry C, 2014, 2, 9760-9766.	2.7	92
54	A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. Bioresource Technology, 2016, 216, 754-760.	4.8	92

#	Article	IF	CITATIONS
55	Highly Thermostable, Flexible, and Conductive Films Prepared from Cellulose, Graphite, and Polypyrrole Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 15641-15648.	4.0	90
56	Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Conversion and Management, 2018, 155, 58-67.	4.4	90
57	Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Separation and Purification Technology, 2012, 101, 18-25.	3.9	89
58	Self-Assembly and Paclitaxel Loading Capacity of Cellulose- <i>graft</i> -poly(lactide) Nanomicelles. Journal of Agricultural and Food Chemistry, 2012, 60, 3900-3908.	2.4	88
59	Preparation of cellulose-graft-poly(É›-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydrate Polymers, 2013, 92, 77-83.	5.1	88
60	Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Industrial Crops and Products, 2017, 108, 72-80.	2.5	88
61	Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chemistry, 2014, 156, 7-13.	4.2	87
62	Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Applied Materials & Interfaces, 2022, 14, 10886-10897.	4.0	87
63	Effects of precipitation pH on the physico-chemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fibre pulping. Polymer Degradation and Stability, 1999, 63, 195-200.	2.7	86
64	Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Scientific Reports, 2016, 6, 39354.	1.6	86
65	Successive alkali extraction and structural characterization of hemicelluloses from sweet sorghum stem. Carbohydrate Polymers, 2013, 92, 2224-2231.	5.1	84
66	Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. Journal of Leather Science and Engineering, 2019, 1, .	2.7	84
67	Structural elucidation of inhomogeneous lignins from bamboo. International Journal of Biological Macromolecules, 2015, 77, 250-259.	3.6	83
68	Structural Variation of Bamboo Lignin before and after Ethanol Organosolv Pretreatment. International Journal of Molecular Sciences, 2013, 14, 21394-21413.	1.8	82
69	Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging. Chemical Engineering Journal, 2020, 384, 123260.	6.6	82
70	A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale, 2019, 11, 725-732.	2.8	80
71	High Production Yield and More Thermally Stable Lignin-Containing Cellulose Nanocrystals Isolated Using a Ternary Acidic Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 7182-7191.	3.2	79
72	<i>Eucommia ulmoides</i> Oliver: A Potential Feedstock for Bioactive Products. Journal of Agricultural and Food Chemistry, 2018, 66, 5433-5438.	2.4	78

#	Article	IF	CITATIONS
73	Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresource Technology, 2019, 285, 121335.	4.8	74
74	Selective Fragmentation of Biorefinery Corncob Lignin into <i>p</i> â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
75	Lignin–phenol–formaldehyde resin adhesives prepared with biorefinery technical lignins. Journal of Applied Polymer Science, 2015, 132, .	1.3	72
76	Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydrate Polymers, 2021, 261, 117884.	5.1	72
77	Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization. Industrial Crops and Products, 2021, 170, 113692.	2.5	72
78	Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7031-7038.	3.2	70
79	Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment. Biotechnology for Biofuels, 2015, 8, 127.	6.2	69
80	Advanced Compressible and Elastic 3D Monoliths beyond Hydrogels. Advanced Functional Materials, 2019, 29, 1904472.	7.8	69
81	Characterization of lignins from wheat straw by alkaline peroxide treatment. Polymer Degradation and Stability, 2000, 67, 101-109.	2.7	68
82	Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochemistry, 2012, 47, 1799-1806.	1.8	68
83	Green Process for Extraction of Lignin by the Microwave-Assisted Ionic Liquid Approach: Toward Biomass Biorefinery and Lignin Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 13062-13072.	3.2	68
84	Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst. Green Chemistry, 2019, 21, 1498-1504.	4.6	65
85	Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 40641-40650.	4.0	64
86	Self-Assembled Conjugated Polymer/Chitosan- <i>graft</i> -Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by "Turn-On―FRET. ACS Applied Materials & Interfaces, 2017, 9, 22875-22884.	4.0	63
87	Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood–Lignin Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 7269-7277.	3.2	63
88	Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Applied Energy, 2014, 136, 519-526.	5.1	61
89	Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis. Bioresource Technology, 2016, 206, 57-64.	4.8	61
90	Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: Optimization by response surface methodology. Carbohydrate Polymers, 2017, 157, 214-225.	5.1	60

#	Article	lF	CITATIONS
91	Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: Evaluation of the process as a conversion method in a biorefinery concept. Bioresource Technology, 2013, 135, 73-81.	4.8	59
92	Tunable, UV-shielding and biodegradable composites based on well-characterized lignins and poly(butylene adipate- <i>co</i> -terephthalate). Green Chemistry, 2020, 22, 8623-8632.	4.6	59
93	Unlocking Structure–Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. ChemSusChem, 2020, 13, 4548-4556.	3.6	58
94	Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydrate Polymers, 2020, 247, 116727.	5.1	58
95	Fragmentation of Woody Lignocellulose into Primary Monolignols and Their Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 4666-4674.	3.2	56
96	Structural Variations of Lignin Macromolecules from Early Growth Stages of Poplar Cell Walls. ACS Sustainable Chemistry and Engineering, 2020, 8, 1813-1822.	3.2	56
97	Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. Journal of Materials Chemistry B, 2020, 8, 10788-10796.	2.9	55
98	Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid. Applied Catalysis B: Environmental, 2021, 291, 120123.	10.8	55
99	Isolation of Cellulolytic Enzyme Lignin from Wood Preswollen/Dissolved in Dimethyl Sulfoxide/ <i>N</i> -Methylimidazole. Journal of Agricultural and Food Chemistry, 2010, 58, 3446-3450.	2.4	54
100	Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Industrial Crops and Products, 2013, 47, 277-285.	2.5	54
101	Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr International Journal of Biological Macromolecules, 2017, 101, 747-757.	3.6	54
102	Production of xylo-sugars from corncob by oxalic acid-assisted ball milling and microwave-induced hydrothermal treatments. Industrial Crops and Products, 2016, 79, 137-145.	2.5	53
103	Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments. Scientific Reports, 2017, 7, 593.	1.6	53
104	Structural Variation of Lignin and Lignin–Carbohydrate Complex in <i>Eucalyptus grandis × E. urophylla</i> during Its Growth Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 1113-1122.	3.2	53
105	Unraveling the structural characteristics of lignin in hydrothermal pretreated fibers and manufactured binderless boards from Eucalyptus grandis. Sustainable Chemical Processes, 2014, 2, .	2.3	52
106	Functional B@ <i>m</i> CN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green Chemistry, 2020, 22, 6384-6392.	4.6	52
107	Structural Characterization of Alkali-Extractable Lignin Fractions from Bamboo. Journal of Biobased Materials and Bioenergy, 2010, 4, 408-425.	0.1	52
108	Fractionation of Alkali-Solubilized Hemicelluloses from Delignified <i>Populus gansuensis</i> : Structure and Properties. Journal of Agricultural and Food Chemistry, 2010, 58, 5743-5750.	2.4	51

#	Article	IF	CITATIONS
109	Structural Elucidation of Sorghum Lignins from an Integrated Biorefinery Process Based on Hydrothermal and Alkaline Treatments. Journal of Agricultural and Food Chemistry, 2014, 62, 8120-8128.	2.4	51
110	Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency. Bioresource Technology, 2016, 211, 164-172.	4.8	51
111	New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon. Journal of Agricultural and Food Chemistry, 2018, 66, 11981-11989.	2.4	51
112	Structural elucidation of lignin macromolecule from abaca during alkaline hydrogen peroxide delignification. International Journal of Biological Macromolecules, 2020, 144, 596-602.	3.6	51
113	Effects of Various Surfactants on Alkali Lignin Electrospinning Ability and Spun Fibers. Industrial & Engineering Chemistry Research, 2017, 56, 9551-9559.	1.8	49
114	Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polymer Bulletin, 2012, 69, 389-403.	1.7	48
115	All-Biomass Fluorescent Hydrogels Based on Biomass Carbon Dots and Alginate/Nanocellulose for Biosensing. ACS Applied Bio Materials, 2018, 1, 1398-1407.	2.3	48
116	Isolation and physico-chemical characterization of lignins from ultrasound irradiated fast-growing poplar wood. BioResources, 2011, 6, 414-433.	0.5	48
117	Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2013, 20, 873-884.	2.4	47
118	Fabrication and Characterization of Regenerated Cellulose Films Using Different Ionic Liquids. Journal of Spectroscopy, 2014, 2014, 1-8.	0.6	47
119	Reasonable regulation of carbon/nitride ratio in carbon nitride for efficient photocatalytic reforming of biomass-derived feedstocks to lactic acid. Applied Catalysis B: Environmental, 2021, 299, 120698.	10.8	47
120	A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries. Journal of Materials Chemistry A, 2022, 10, 4845-4857.	5.2	47
121	Fractional Isolation and Chemical Structure of Hemicellulosic Polymers Obtained from Bambusa rigida Species. Journal of Agricultural and Food Chemistry, 2010, 58, 11372-11383.	2.4	46
122	<scp>d</scp> -Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction. Green Chemistry, 2016, 18, 1738-1750.	4.6	46
123	Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon. Cellulose, 2020, 27, 415-428.	2.4	46
124	Structural and dynamic changes of lignin in Eucalyptus cell walls during successive alkaline ethanol treatments. Industrial Crops and Products, 2015, 74, 200-208.	2.5	45
125	Hydrogenolysis of biorefinery corncob lignin into aromatic phenols over activated carbon-supported nickel. Sustainable Energy and Fuels, 2019, 3, 401-408.	2.5	45
126	Green synthesis of chemical converted graphene sheets derived from pulping black liquor. Carbon, 2020, 158, 690-697.	5.4	45

#	Article	IF	CITATIONS
127	Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnology for Biofuels, 2020, 13, 2.	6.2	45
128	Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. Journal of Materials Chemistry A, 2018, 6, 7693-7705.	5.2	43
129	Characterization of Lignins Isolated with Alkaline Ethanol from the Hydrothermal Pretreated Tamarix ramosissima. Bioenergy Research, 2013, 6, 519-532.	2.2	42
130	Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydrate Polymers, 2016, 153, 542-548.	5.1	42
131	Isolation and analysis of four constituents from barks and leaves of Eucommia ulmoides Oliver by a multi-step process. Industrial Crops and Products, 2016, 83, 124-132.	2.5	41
132	Ligninâ€Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification. ChemSusChem, 2017, 10, 830-835.	3.6	41
133	Life-cycle assessment and techno-economic analysis of the utilization of bio-oil components for the production of three chemicals. Green Chemistry, 2018, 20, 3287-3301.	4.6	41
134	Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology Advances, 2010, 28, 609-612.	6.0	39
135	Preparation of Lignin-Phenol-Formaldehyde Resin Adhesive Based on Active Sites of Technical Lignin. Journal of Biobased Materials and Bioenergy, 2015, 9, 266-272.	0.1	39
136	Selective precipitation and characterization of lignin–carbohydrate complexes (LCCs) from Eucalyptus. Planta, 2018, 247, 1077-1087.	1.6	39
137	Microwave-assisted conversion of biomass derived hemicelluloses into xylo-oligosaccharides by novel sulfonated bamboo-based catalysts. Biomass and Bioenergy, 2015, 75, 245-253.	2.9	37
138	A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. Biotechnology for Biofuels, 2018, 11, 324.	6.2	37
139	Fabrication of antimicrobial composite films based on xylan from pulping process for food packaging. International Journal of Biological Macromolecules, 2019, 134, 122-130.	3.6	37
140	Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, 2019, 12, 1059-1068.	3.6	37
141	Structural and Hydrolysis Characteristics of Cypress Pretreated by Ionic Liquids in a Microwave Irradiation Environment. Bioenergy Research, 2014, 7, 1305-1316.	2.2	36
142	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	2.4	36
143	Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Advances, 2018, 8, 35211-35217.	1.7	36
144	Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus. International Journal of Biological Macromolecules, 2019, 138, 519-527.	3.6	36

#	Article	IF	CITATIONS
145	Phosphorus-doped carbon nitride with grafted sulfonic acid groups for efficient photocatalytic synthesis of xylonic acid. Green Chemistry, 2021, 23, 4150-4160.	4.6	36
146	Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chemical Engineering Journal, 2022, 437, 135232.	6.6	36
147	Recent Advances and Challenges in Photoreforming of Biomassâ€Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem, 2021, 14, 4903-4922.	3.6	35
148	Homogeneous lauroylation of ball-milled bamboo in ionic liquid for bio-based composites production. Industrial Crops and Products, 2011, 34, 1491-1501.	2.5	34
149	Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: Effect of integrated pretreatment on enzymatic hydrolysis. Bioresource Technology, 2013, 144, 429-434.	4.8	34
150	Lignosulfonic Acid: A Renewable and Effective Biomass-Based Catalyst for Multicomponent Reactions. ACS Sustainable Chemistry and Engineering, 2015, 3, 1366-1373.	3.2	34
151	Synthesis and Characterization of New 5‣inked Pinoresinol Lignin Models. Chemistry - A European Journal, 2012, 18, 16402-16410.	1.7	33
152	The role of oxygen vacancies in biomass deoxygenation by reducible zinc/zinc oxide catalysts. Catalysis Science and Technology, 2018, 8, 1819-1827.	2.1	33
153	Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii. Wood Science and Technology, 2006, 40, 358-370.	1.4	32
154	Eco-Friendly Phenol–Urea–Formaldehyde Co-condensed Resin Adhesives Accelerated by Resorcinol for Plywood Manufacturing. ACS Omega, 2018, 3, 8521-8528.	1.6	32
155	Insights into the Structural Changes and Potentials of Lignin from Bagasse during the Integrated Delignification Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 13886-13897.	3.2	32
156	Lignin-AuNPs liquid marble for remotely-controllable detection of Pb2+. Scientific Reports, 2016, 6, 38164.	1.6	31
157	The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from Eucalyptus. Separation and Purification Technology, 2018, 191, 364-369.	3.9	31
158	Au@ <i>h</i> -Al ₂ O ₃ analogic yolk–shell nanocatalyst for highly selective synthesis of biomass-derived <scp>d</scp> -xylonic acid <i>via</i> regulation of structure effects. Green Chemistry, 2018, 20, 5188-5195.	4.6	31
159	Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst. Applied Catalysis B: Environmental, 2021, 292, 120180.	10.8	31
160	Chemical Changes of Raw Materials and Manufactured Binderless Boards during Hot Pressing: Lignin Isolation and Characterization. BioResources, 2013, 9, .	0.5	30
161	Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Scientific Reports, 2015, 5, 16405.	1.6	29
162	Structural Elucidation of Whole Lignin in Cell Walls of Triploid of <i>Populus tomentosa</i> Carr ACS Sustainable Chemistry and Engineering, 2016, 4, 1006-1015.	3.2	29

#	Article	IF	CITATIONS
163	CulnS2 quantum dots anchored onto the three-dimensional flexible self-supporting graphene oxide array with regulatable crystallinity and defect density for efficient photocatalytic synthesis of xylonic acid. Applied Catalysis B: Environmental, 2022, 316, 121573.	10.8	29
164	Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461.	2.9	28
165	Bio-oil gasification using air - Steam as gasifying agents in an entrained flow gasifier. Energy, 2018, 142, 426-435.	4.5	28
166	A review of gasification of bio-oil for gas production. Sustainable Energy and Fuels, 2019, 3, 1600-1622.	2.5	28
167	Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments. International Journal of Polymer Science, 2014, 2014, 1-10.	1.2	26
168	Optimization of bamboo autohydrolysis for the production of xylo-oligosaccharides using response surface methodology. RSC Advances, 2015, 5, 106219-106226.	1.7	25
169	Catalytic Conversion of Carbohydrates into 5â€Ethoxymethylfurfural by a Magnetic Solid Acid Using γâ€Valerolactone as a Coâ€Solvent. Energy Technology, 2018, 6, 1951-1958.	1.8	25
170	Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone). Cellulose, 2015, 22, 2365-2374.	2.4	24
171	Microwave-Assisted Sulfonation of Lignin for the Fabrication of a High-Performance Dye Dispersant. ACS Sustainable Chemistry and Engineering, 2021, 9, 9053-9061.	3.2	24
172	Integrated biorefinery based on hydrothermal and alkaline treatments: Investigation of sorghum hemicelluloses. Carbohydrate Polymers, 2014, 111, 663-669.	5.1	23
173	Influence of alkaline hydrothermal pretreatment on shrub wood Tamarix ramosissima : Characteristics of degraded lignin. Biomass and Bioenergy, 2014, 68, 82-94.	2.9	23
174	Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Industrial Crops and Products, 2019, 140, 111631.	2.5	23
175	Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. International Journal of Biological Macromolecules, 2021, 184, 604-617.	3.6	23
176	Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu ₂ O/CuO@CA. Journal of Materials Chemistry C, 2021, 9, 16450-16458.	2.7	22
177	Development of the synthesis and applications of xylonic acid: A mini-review. Fuel, 2022, 314, 122773.	3.4	22
178	Hydrothermal Conversion of Bamboo: Identification and Distribution of the Components in Solid Residue, Water-Soluble and Acetone-Soluble Fractions. Journal of Agricultural and Food Chemistry, 2014, 62, 12360-12365.	2.4	21
179	Toward an Understanding of Inhomogeneities in Structure of Lignin in Green Solvents Biorefinery. Part 1: Fractionation and Characterization of Lignin. ACS Sustainable Chemistry and Engineering, 2015, 3, 2443-2451.	3.2	21
180	Variations of lignin–lignin and lignin–carbohydrate linkages from young Neosinocalamus affinis bamboo culms. RSC Advances, 2016, 6, 15478-15484.	1.7	21

RUN-CANG SUN

#	Article	IF	CITATIONS
181	Codensification of Agroforestry Residue with Bio-Oil for Improved Fuel Pellets. Energy & Fuels, 2018, 32, 598-606.	2.5	21
182	Understanding the Distribution and Structural Feature of <i>Eucalyptus</i> Lignin Isolated by γ-Valerolactone/Water/Acid System. ACS Sustainable Chemistry and Engineering, 2018, 6, 12124-12131.	3.2	21
183	Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate. Industrial Crops and Products, 2021, 173, 114148.	2.5	21
184	H2SO4-Catalyzed Hydrothermal Pretreatment of Triploid Poplar to Enhance Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2012, 51, 11598-11604.	1.8	19
185	Integrated Hot-Compressed Water and Laccase-Mediator Treatments of <i>Eucalyptus grandis</i> Fibers: Structural Changes of Fiber and Lignin. Journal of Agricultural and Food Chemistry, 2015, 63, 1763-1772.	2.4	19
186	Nitrogen-doped carbon anchored ruthenium nanoparticles for biofuel upgrade. Fuel, 2022, 314, 123100.	3.4	19
187	F127/conjugated polymers fluorescent micelles for trace detection of nitroaromatic explosives. Dyes and Pigments, 2016, 125, 367-374.	2.0	18
188	Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose, 2017, 24, 889-902.	2.4	18
189	One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification. Biotechnology for Biofuels, 2018, 11, 137.	6.2	18
190	Corncob Biorefinery for Platform Chemicals and Lignin Coproduction: Metal Chlorides as Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5309-5317.	3.2	18
191	Comparative study of hemicelluloses from Hybrid Pennisetum via a green and clean integrated process. Carbohydrate Polymers, 2019, 205, 135-142.	5.1	18
192	Full Solution-Processed Fabrication of Conductive Hybrid Paper Electrodes for Organic Optoelectronics. ACS Sustainable Chemistry and Engineering, 2020, 8, 3392-3400.	3.2	17
193	Structural Features of Alkaline Dioxane Lignin and Residual Lignin from <i>Eucalyptus grandis × E. urophylla</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 968-974.	2.4	16
194	Across the Board: Runcang Sun on Lignin Nanoparticles. ChemSusChem, 2020, 13, 4768-4770.	3.6	16
195	Boosting electron kinetics of anatase TiO2 with carbon nanosheet for efficient photo-reforming of xylose into biomass-derived organic acids. Journal of Alloys and Compounds, 2022, 906, 164276.	2.8	16
196	Special Magnetic Catalyst with Lignin-Reduced Au–Pd Nanoalloy. ACS Omega, 2017, 2, 4938-4945.	1.6	15
197	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	3.2	15
198	Renewable and flexible thermosetting epoxies based on functionalized biorefinery lignin fractions. Materials Today Sustainability, 2021, 15, 100083.	1.9	14

#	Article	IF	CITATIONS
199	Revealing the Topochemistry and Structural Features of Lignin during the Growth of <i>Eucalyptus grandis</i> × <i>Eucalyptus urophylla</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 9198-9207.	3.2	13
200	Separation and Characterization of Lignins from the Black Liquor of Oil Palm Trunk Fiber Pulping. Separation Science and Technology, 1999, 34, 3045-3058.	1.3	12
201	Assessment of structural characteristics of regenerated cellulolytic enzyme lignin based on a mild DMSO/[Emim]OAc dissolution system from triploid of Populus tomentosa Carr RSC Advances, 2017, 7, 3376-3387.	1.7	10
202	Sulfonation of carbonized xylan-type hemicellulose: a renewable and effective biomass-based biocatalyst for the synthesis of O- and N-heterocycles. New Journal of Chemistry, 2018, 42, 9140-9150.	1.4	10
203	Preface to Special Issue ofChemSusChemon Lignin Valorization: From Theory to Practice. ChemSusChem, 2020, 13, 4175-4180.	3.6	10
204	Upgrading Traditional Pulp Mill into Biorefinery Platform: Wheat Straw as a Feedstock. ACS Sustainable Chemistry and Engineering, 2018, 6, 15284-15291.	3.2	9
205	Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 166-176.	3.2	9
206	Effect of alkaline preswelling on the structure of lignins from Eucalyptus. Scientific Reports, 2017, 7, 45752.	1.6	7
207	Comparison of emulsifying capacity of two hemicelluloses from moso bamboo in soy oil-in-water emulsions. RSC Advances, 2020, 10, 4657-4663.	1.7	7
208	Turning Wood Autohydrolysate Directly into Food Packing Composite Films with Good Toughness. International Journal of Polymer Science, 2018, 2018, 1-8.	1.2	6
209	Lignin Source and Structural Characterization. ChemSusChem, 2020, 13, 4174-4174.	3.6	6
210	Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem, 2022, 14, .	1.8	6
211	Reaction Behavior of Cellulose in the Homogeneous Esterification of Bagasse Modified with Phthalic Anhydride in Ionic Liquid 1-Allyl-3-methylimidazium Chloride. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	5
212	Chemoselective Hydrogenation of Functionalized Nitroarenes into Anilines by Supported Molybdenum Catalysts. ChemistrySelect, 2020, 5, 7249-7253.	0.7	4
213	Metal coordination assists fabrication of multifunctional aerogel. Journal of Materials Science and Technology, 2021, 71, 67-74.	5.6	4
214	Highly selective oxidation of monosaccharides to sugar acids at room temperature over palladium supported on surface functionalized carbon nanotubes. Green Chemistry, 2021, 23, 7084-7092.	4.6	4
215	Value-added products from lignin: IsolationValue-added products from lignin: Isolation, characterization and applications. , 2021, , 33-55.		2