Elisa Scalco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484134/publications.pdf Version: 2024-02-01

FUSA SCALCO

#	Article	IF	CITATIONS
1	A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model. Applied Sciences (Switzerland), 2022, 12, 1907.	2.5	2
2	The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Physics in Medicine and Biology, 2022, 67, 09TR03.	3.0	6
3	A supervised deep neural network approach with standardized targets for enhanced accuracy of IVIM parameter estimation from multi NR images. NMR in Biomedicine, 2022, 35, e4774.	2.8	7
4	Theranostics in Boron Neutron Capture Therapy. Life, 2021, 11, 330.	2.4	32
5	A Multi-Variate framework to assess reliability and discrimination power of Bayesian estimation of Intravoxel Incoherent Motion parameters. Physica Medica, 2021, 89, 11-19.	0.7	5
6	A novel bayesian approach with conditional autoregressive specification for intravoxel incoherent motion diffusion $\hat{a} \in \mathbf{W}$ eighted MRI. NMR in Biomedicine, 2020, 33, e4201.	2.8	10
7	Multi-Steps Registration Protocol for Multimodal MR Images of Hip Skeletal Muscles in a Longitudinal Study. Applied Sciences (Switzerland), 2020, 10, 7823.	2.5	6
8	T2wâ€MRI signal normalization affects radiomics features reproducibility. Medical Physics, 2020, 47, 1680-1691.	3.0	82
9	EP-2022 Dose-dependent changes in Tw-MRI texture of obturator muscles after prostate cancer radiotherapy. Radiotherapy and Oncology, 2019, 133, S1108-S1109.	0.6	0
10	A new Probabilistic Active Contour region-based method for multiclass medical image segmentation. Medical and Biological Engineering and Computing, 2019, 57, 565-576.	2.8	16
11	A Conditional Autoregressive Model for Estimating Slow and Fast Diffusion from Magnetic Resonance Images. Springer Proceedings in Mathematics and Statistics, 2019, , 135-144.	0.2	1
12	Triggered intravoxel incoherent motion MRI for the assessment of calf muscle perfusion during isometric intermittent exercise. NMR in Biomedicine, 2018, 31, e3922.	2.8	20
13	Texture analysis of T1â€w and T2â€w MR images allows a quantitative evaluation of radiationâ€induced changes of internal obturator muscles after radiotherapy for prostate cancer. Medical Physics, 2018, 45, 1518-1528.	3.0	7
14	A Comparative Evaluation of 3 Different Free-Form Deformable Image Registration and Contour Propagation Methods for Head and Neck MRI: The Case of Parotid Changes During Radiotherapy. Technology in Cancer Research and Treatment, 2017, 16, 373-381.	1.9	25
15	Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artificial Intelligence in Medicine, 2017, 81, 41-53.	6.5	58
16	PO-0896: Quantitative MRI-based characterization of obturator muscles after prostate cancer radiotherapy. Radiotherapy and Oncology, 2017, 123, S494-S495.	0.6	0
17	Texture analysis of medical images for radiotherapy applications. British Journal of Radiology, 2017, 90, 20160642.	2.2	109
18	Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy. Physica Medica, 2016, 32, 1672-1680.	0.7	27

Elisa Scalco

#	Article	IF	CITATIONS
19	SP-0568: Texture analysis of medical images in radiotherapy. Radiotherapy and Oncology, 2016, 119, S273-S274.	0.6	1
20	EP-1859: Tumor control assessment on cervical lymph nodes using texture analysis on CT and T2w-MRI images. Radiotherapy and Oncology, 2016, 119, S876-S877.	0.6	0
21	EP-1858: Variation of apparent diffusion coefficient in penile bulb after radiotherapy. Radiotherapy and Oncology, 2016, 119, S875-S876.	0.6	0
22	Evaluation of different CT lung anatomies for proton therapy with pencil beam scanning delivery, using a validated non-rigid image registration method. Acta OncolA ³ gica, 2016, 55, 647-651.	1.8	1
23	Early classification of parotid glands shrinkage in radiotherapy patients: A comparative study. Biosystems Engineering, 2015, 138, 77-89.	4.3	9
24	Analysis of serial CT images for studying the RT effects in head-neck cancer patients. , 2015, 2015, 5235-8.		0
25	High quality surface reconstruction in radiotherapy: Cross-sectional contours to 3D mesh using wavelets. , 2015, 2015, 4222-5.		5
26	Texture analysis to assess structural modifications induced by radiotherapy. , 2015, 2015, 5219-22.		7
27	Assessment and clinical validation of margins for adaptive simultaneous integrated boost in neo-adjuvant radiochemotherapy for rectal cancer. Physica Medica, 2015, 31, 167-172.	0.7	17
28	The Shape of Parotid DVH Predicts the Entity of Gland Deformation During IMRT for Head and Neck Cancers. Technology in Cancer Research and Treatment, 2015, 14, 683-691.	1.9	9
29	Multimodal nonâ€rigid registration methods based on local variability measures in computed tomography and magnetic resonance brain images. IET Image Processing, 2014, 8, 699-707.	2.5	6
30	Early changes of parotid density and volume predict modifications at the end of therapy and intensity of acute xerostomia. Strahlentherapie Und Onkologie, 2014, 190, 1001-1007.	2.0	25
31	Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. Radiotherapy and Oncology, 2013, 109, 384-387.	0.6	80
32	Mesh-based approach for the 3D analysis of anatomical structures of interest in Radiotherapy. , 2012, 2012, 6555-8.		0
33	Density variation of parotid glands during IMRT for head–neck cancer: Correlation with treatment and anatomical parameters. Radiotherapy and Oncology, 2012, 104, 224-229.	0.6	27
34	Comparative high-resolution pQCT analysis of femoral neck indicates different bone mass distribution in osteoporosis and osteoarthritis. Osteoporosis International, 2012, 23, 1967-1975.	3.1	25
35	An Automatic Segmentation Method for Regional Analysis of Femoral Neck Images Acquired by pQCT. Annals of Biomedical Engineering, 2011, 39, 172-184.	2.5	5
36	An automatic contour propagation method to follow parotid gland deformation during head-and-neck cancer tomotherapy. Physics in Medicine and Biology, 2011, 56, 775-791.	3.0	56

#	Article	IF	CITATIONS
37	Elastic registration based on particle filter in radiotherapy images with brain deformations. , 2011, 2011, 8049-52.		5