Olivier Forni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/848409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus, 2022, 373, 114773.	2.5	19
2	SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106341.	2.9	20
3	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	2.9	40
4	Bedrock Geochemistry and Alteration History of the Clayâ€Bearing Glen Torridon Region of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	17
5	In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.	27.8	30
6	Optical calibration of the SuperCam instrument body unit spectrometers. Applied Optics, 2022, 61, 2967.	1.8	4
7	Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. Analytica Chimica Acta, 2022, 1209, 339837.	5.4	9
8	Field investigation of volcanic deposits on Vulcano, Italy using a handheld laser-induced breakdown spectroscopy instrument. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 177, 106067.	2.9	11
9	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
10	Quantification of manganese for ChemCam Mars and laboratory spectra using a multivariate model. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106223.	2.9	16
11	Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for ChemCam analyses at Gale crater, Mars. Icarus, 2021, 365, 114481.	2.5	11
12	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
13	The gammaproteobacterium <i>Achromatium</i> forms intracellular amorphous calcium carbonate and not (crystalline) calcite. Geobiology, 2021, 19, 199-213.	2.4	20
14	Clustering Supported Classification of ChemCam Data From Gale Crater, Mars. Earth and Space Science, 2021, 8, .	2.6	7
15	Analyses of Highâ€Iron Sedimentary Bedrock and Diagenetic Features Observed With ChemCam at Vera Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006314.	3.6	30
16	Pre-launch radiometric calibration of the infrared spectrometer onboard SuperCam for the Mars2020 rover. Review of Scientific Instruments, 2020, 91, 063105.	1.3	10
17	Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006299.	3.6	30
18	Boron and Lithium in Calcium Sulfate Veins: Tracking Precipitation of Diagenetic Materials in Vera Rubin Ridge, Gale Crater. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006301.	3.6	8

#	Article	IF	CITATIONS
19	SuperCam Calibration Targets: Design and Development. Space Science Reviews, 2020, 216, 138.	8.1	44
20	Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. Icarus, 2020, 350, 113897.	2.5	11
21	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
22	Pulsed laser-induced heating of mineral phases: Implications for laser-induced breakdown spectroscopy combined with Raman spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 160, 105687.	2.9	27
23	Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. Geophysical Research Letters, 2019, 46, 10754-10763.	4.0	52
24	Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 153, 50-60.	2.9	57
25	Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus, 2019, 321, 736-751.	2.5	23
26	Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 2019, 321, 619-631.	2.5	52
27	Using ChemCam LIBS data to constrain grain size in rocks on Mars: Proof of concept and application to rocks at Yellowknife Bay and Pahrump Hills, Gale crater. Icarus, 2019, 321, 82-98.	2.5	37
28	The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results. , 2019, , .		5
29	Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars. Icarus, 2018, 311, 69-86.	2.5	34
30	Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater. Geology, 2018, 46, 515-518.	4.4	71
31	Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.	4.0	40
32	Characterization of Hydrogen in Basaltic Materials With Laserâ€Induced Breakdown Spectroscopy (<scp>LIBS</scp>) for Application to <scp>MSL</scp> ChemCam Data. Journal of Geophysical Research E: Planets, 2018, 123, 1996-2021.	3.6	32
33	Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 64-85.	2.9	137
34	Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 130, 82-100.	2.9	65
35	Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus, 2017, 288, 265-283.	2.5	96
36	Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science Letters, 2017, 471, 172-185.	4.4	247

#	Article	IF	CITATIONS
37	Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars. Icarus, 2017, 289, 144-156.	2.5	12
38	Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. Journal of Geophysical Research E: Planets, 2017, 122, 650-679.	3.6	48
39	Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. Journal of Geophysical Research E: Planets, 2017, 122, 744-770.	3.6	57
40	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	12.6	169
41	Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 137, 13-22.	2.9	34
42	Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162.	3.6	46
43	Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus, 2017, 284, 1-17.	2.5	46
44	Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus, 2017, 281, 121-136.	2.5	90
45	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
46	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
47	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	5.1	69
48	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	4.0	110
49	Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 338-352.	3.6	32
50	Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. Journal of Geophysical Research E: Planets, 2016, 121, 353-387.	3.6	53
51	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
52	Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 120, 19-29.	2.9	27
53	Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos, 2016, 254-255, 36-52.	1.4	66
54	Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth and Planetary Science Letters, 2016, 452, 197-205.	4.4	103

#	Article	IF	CITATIONS
55	The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> . Journal of Geophysical Research E: Planets, 2016, 121, 784-804.	3.6	67
56	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A139.	5.1	32
57	Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 828, 145-155.	1.6	4
58	ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.	3.0	134
59	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.	5.1	46
60	Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.	3.6	51
61	Hydrogen detection with ChemCam at Gale crater. Icarus, 2015, 249, 43-61.	2.5	58
62	First detection of fluorine on Mars: Implications for Gale Crater's geochemistry. Geophysical Research Letters, 2015, 42, 1020-1028.	4.0	107
63	In situ evidence for continental crust on early Mars. Nature Geoscience, 2015, 8, 605-609.	12.9	233
64	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	7.1	172
65	Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 2015, 249, 22-42.	2.5	64
66	Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data. Icarus, 2015, 249, 62-73.	2.5	49
67	ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 2015, 249, 2-21.	2.5	52
68	High manganese concentrations in rocks at Gale crater, Mars. Geophysical Research Letters, 2014, 41, 5755-5763.	4.0	81
69	Trace element geochemistry (Li, Ba, Sr, and Rb) using <i>Curiosity</i> 's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 255-285.	3.6	86
70	Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 96, 51-60.	2.9	45
71	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
72	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687

#	Article	IF	CITATIONS
73	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
74	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
75	Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1991-2016.	3.6	214
76	In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 34-51.	2.9	45
77	Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 98, 39-47.	2.9	87
78	Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatileâ€rich igneous source. Journal of Geophysical Research E: Planets, 2014, 119, 64-81.	3.6	113
79	<i>Planck</i> 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
80	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
81	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
82	Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research E: Planets, 2014, 119, 2109-2131.	3.6	48
83	Chemistry of fractureâ€filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2398-2415.	3.6	70
84	Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater. Journal of Geophysical Research E: Planets, 2014, 119, 30-46.	3.6	114
85	Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 82, 1-27.	2.9	258
86	Independent component analysis classification of laser induced breakdown spectroscopy spectra. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 86, 31-41.	2.9	66
87	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
88	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
89	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
90	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326

#	Article	IF	CITATIONS
91	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
92	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
93	Distribution of iron on Vesta. Meteoritics and Planetary Science, 2013, 48, 2237-2251.	1.6	35
94	Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics and Planetary Science, 2013, 48, 2300-2315.	1.6	66
95	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
96	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
97	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
98	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
99	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
100	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
101	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
102	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
103	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
104	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
105	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
106	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Science Reviews, 2012, 170, 167-227.	8.1	429
107	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Science Reviews, 2012, 170, 95-166.	8.1	372
108	The South Pole-Aitken basin region, Moon: GIS-based geologic investigation using Kaguya elemental information. Advances in Space Research, 2012, 50, 1629-1637.	2.6	4

#	Article	IF	CITATIONS
109	Elemental Mapping by Dawn Reveals Exogenic H in Vesta's Regolith. Science, 2012, 338, 242-246.	12.6	201
110	Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer. Earth and Planetary Science Letters, 2012, 337-338, 10-16.	4.4	23
111	The global distribution of calcium on the Moon: Implications for high-Ca pyroxene in the eastern mare region. Earth and Planetary Science Letters, 2012, 353-354, 93-98.	4.4	27
112	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
113	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. , 2012, , 95-166.		2
114	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. , 2012, , 167-227.		6
115	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
116	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
117	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
118	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
119	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
120	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
121	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
122	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
123	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
124	<i>Planck</i> early results. VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	5.1	116
125	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
126	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74

#	Article	IF	CITATIONS
127	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
128	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
129	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
130	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
131	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
132	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
133	<i>Planck</i> early results. IV. First assessment of the High Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A4.	5.1	136
134	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
135	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂC266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â~Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
136	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
137	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
138	Laser induced breakdown spectroscopy library for the Martian environment. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 805-814.	2.9	86
139	Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data. Analytical and Bioanalytical Chemistry, 2011, 400, 3247-3260.	3.7	40
140	Mars mantle convection: Influence of phase transitions with core cooling. Planetary and Space Science, 2011, 59, 741-748.	1.7	8
141	Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 280-289.	2.9	90
142	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
143	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268
144	SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planetary and Space Science, 2010, 58, 125-143.	1.7	70

#	Article	IF	CITATIONS
145	Determining the Absolute Abundances of Natural Radioactive Elements on the Lunar Surface byÂtheÂKaguya Gamma-ray Spectrometer. Space Science Reviews, 2010, 154, 193-218.	8.1	46
146	Quantitative geochemical mapping of martian elemental provinces. Icarus, 2010, 207, 226-247.	2.5	42
147	Uranium on the Moon: Global distribution and U/Th ratio. Geophysical Research Letters, 2010, 37, .	4.0	64
148	First Results of High Performance Ge Gamma-Ray Spectrometer Onboard Lunar Orbiter SELENE (KAGUYA). Journal of the Physical Society of Japan, 2009, 78, 18-25.	1.6	21
149	A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus, 2009, 201, 504-516.	2.5	42
150	Independent Component Analysis of the Gamma Ray Spectrometer data of SELENE (Kaguya). , 2009, , .		2
151	Germanium Gamma-Ray Spectrometer on SELENE (KAGUYA). Journal of the Physical Society of Japan, 2009, 78, 153-156.	1.6	6
152	Detectability of nontrivial topologies. Physical Review D, 2008, 77, .	4.7	15
153	Constraining topology in harmonic space. Physical Review D, 2006, 73, .	4.7	26
154	A new method to investigate hyperspectral image cubes: An application of the wavelet transform. Journal of Geophysical Research, 2006, 111, .	3.3	5
155	Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.7	0
156	Cosmological Non-Gaussian Signature Detection: Comparing Performance of Different Statistical Tests. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.7	26
157	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
158	Detection and discrimination of cosmological non-Gaussian signatures by multi-scale methods. Astronomy and Astrophysics, 2004, 416, 9-17.	5.1	46
159	Separating the kinetic Sunyaev-Zel'dovich effect from primary cosmic microwave background fluctuations. Astronomy and Astrophysics, 2004, 420, 49-60.	5.1	10
160	CMB non-Gaussianities from the "local―universe. New Astronomy Reviews, 2003, 47, 805-810.	12.8	1
161	Multiscale Methods Performances to Detect Cosmological non-Gaussian Signatures. , 2002, 4847, 74.		0
162	Blind statistical indicators of the kinetic Sunyaev-Zel'dovich anisotropies. Astronomy and Astrophysics, 2002, 395, 747-751.	5.1	2

Olivier Forni

#	Article	IF	CITATIONS
163	MARS-IRMA: in-situ infrared microscope analysis of Martian soil and rock samples Advances in Space Research, 2001, 28, 1219-1224.	2.6	5
164	<title>Image and spectral image compression for four experiments on the ROSETTA and Mars Express missions of ESA</title> . , 2000, 4115, 364.		13
165	Searching for non-gaussianity: Statistical tests. Astronomy and Astrophysics, 1999, 137, 553-567.	2.1	14
166	Origin and Evolution of Comets, Icy Planets and Satellites. Astrophysics and Space Science Library, 1998, , 367-394.	2.7	2
167	Origin and thermal evolution of icy satellites. Surveys in Geophysics, 1995, 16, 533-591.	4.6	27
168	Convection and lithospheric strength in Dione, an icy satellite of Saturn. Icarus, 1991, 94, 232-245.	2.5	17
169	Topography of the Martian tropical regions with ISM. Planetary and Space Science, 1991, 39, 225-236.	1.7	15
170	Results from the ISM experiment. Nature, 1989, 341, 591-593.	27.8	124
171	Geology of large impact craters on Ganymede: Implications on thermal and tectonic histories. Earth, Moon and Planets, 1986, 34, 35-53.	0.6	7
172	Ganymedean pedestal craters distribution: Implications on thermal and tectonic histories. Earth, Moon and Planets, 1986, 34, 177-188.	0.6	1