
Jarle Werner Bjerke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483936/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
2	ldentifying climate thresholds for dominant natural vegetation types at the global scale using machine learning: Average climate versus extremes. Global Change Biology, 2022, 28, 3557-3579.	9.5	20
3	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	2.3	43
4	Springtime grazing by Arctic-breeding geese reduces first- and second-harvest yields on sub-Arctic agricultural grasslands. Science of the Total Environment, 2021, 793, 148619.	8.0	11
5	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
6	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	29.7	889
7	Development of new metrics to assess and quantify climatic drivers of extreme event driven Arctic browning. Remote Sensing of Environment, 2020, 243, 111749.	11.0	11
8	Monitoring Winter Stress Vulnerability of High-Latitude Understory Vegetation Using Intraspecific Trait Variability and Remote Sensing Approaches. Sensors, 2020, 20, 2102.	3.8	4
9	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	18.8	447
10	Extreme event impacts on CO ₂ fluxes across a range of high latitude, shrub-dominated ecosystems. Environmental Research Letters, 2020, 15, 104084.	5.2	7
11	Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems, 2019, 22, 1512-1529.	3.4	6
12	Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO ₂ fluxes. Global Change Biology, 2019, 25, 489-503.	9.5	56
13	Vulnerability and resilience of the carbon exchange of a subarctic peatland to an extreme winter event. Environmental Research Letters, 2018, 13, 065009.	5.2	13
14	Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Science of the Total Environment, 2018, 627, 438-449.	8.0	65
15	Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta, 2018, 247, 635-648.	3.2	17
16	Impact of Multiple Ecological Stressors on a Sub-Arctic Ecosystem: No Interaction Between Extreme Winter Warming Events, Nitrogen Addition and Grazing. Frontiers in Plant Science, 2018, 9, 1787.	3.6	6
17	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
18	Stressâ€induced secondary leaves of a boreal deciduous shrub (<i>Vaccinium myrtillus</i>) overwinter then regain activity the following growing season. Nordic Journal of Botany, 2018, 36, e01894.	0.5	4

#	Article	IF	CITATIONS
19	Alpine garden plants from six continents show high vulnerability to ice encasement. Norsk Geografisk Tidsskrift, 2018, 72, 57-64.	0.7	3
20	Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high Arctic plants: Salix polaris, Bistorta vivipara, and Dryas octopetala. Acta Societatis Botanicorum Poloniae, 2018, 87, .	0.8	16
21	Persistent reduction of segment growth and photosynthesis in a widespread and important subâ€Arctic moss species after cessation of three years of experimental winter warming. Functional Ecology, 2017, 31, 127-134.	3.6	12
22	Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Science of the Total Environment, 2017, 599-600, 1965-1976.	8.0	74
23	Yield reductions in agricultural grasslands in Norway after springtime grazing by pinkâ€footed geese. Journal of Applied Ecology, 2017, 54, 1836-1846.	4.0	9
24	The Origin of Heavy Metals and Radionuclides Accumulated in the Soil and Biota Samples Collected in Svalbard, Near Longyearbyen. Ecological Chemistry and Engineering S, 2017, 24, 223-238.	1.5	16
25	Combining modelling tools to evaluate a goose management scheme. Ambio, 2017, 46, 210-223.	5.5	10
26	Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants. Remote Sensing, 2017, 9, 1289.	4.0	33
27	Snow season variability in a boreal-Arctic transition area monitored by MODIS data. Environmental Research Letters, 2016, 11, 125005.	5.2	10
28	Arctic browning: extreme events and trends reversing arctic greening. Global Change Biology, 2016, 22, 2960-2962.	9.5	187
29	175 years of adaptation: North Scandinavian Sámi reindeer herding between government policies and winter climate variability (1835–2010). Journal of Forest Economics, 2016, 24, 186-204.	0.2	27
30	Changes in Winter Warming Events in the Nordic Arctic Region. Journal of Climate, 2016, 29, 6223-6244.	3.2	109
31	Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 2016, 45, 516-537.	5.5	154
32	Impacts of snow season on ground-ice accumulation, soil frost and primary productivity in a grassland of sub-Arctic Norway. Environmental Research Letters, 2015, 10, 095007.	5.2	31
33	Evolution of complex symbiotic relationships in a morphologically derived family of lichenâ€forming fungi. New Phytologist, 2015, 208, 1217-1226.	7.3	105
34	Climatic and biotic extreme events moderate longâ€ŧerm responses of above―and belowground subâ€Arctic heathland communities to climate change. Global Change Biology, 2015, 21, 4063-4075.	9.5	45
35	The Use Of Mosses In Biomonitoring Of Selected Areas In Poland And Spitsbergen In The Years From 1975 To 2014. Ecological Chemistry and Engineering S, 2015, 22, 201-218.	1.5	18
36	Reduced dairy grassland yields in <scp>C</scp> entral <scp>N</scp> orway after a single springtime grazing event by pinkâ€footed geese. Grass and Forage Science, 2014, 69, 129-139.	2.9	23

#	Article	IF	CITATIONS
37	Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters, 2014, 9, 084006.	5.2	108
38	Parmelioid lichens (Parmeliaceae) in southernmost South America. Phytotaxa, 2014, 173, 1.	0.3	8
39	Rapid photosynthetic recovery of a snow-covered feather moss and <i>Peltigera</i> lichen during sub-Arctic midwinter warming. Plant Ecology and Diversity, 2013, 6, 383-392.	2.4	14
40	Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120488.	4.0	140
41	Ecosystem Response to Climatic Change: The Importance of the Cold Season. Ambio, 2012, 41, 246-255.	5.5	55
42	Rapid recovery of recently overexploited winter grazing pastures for reindeer in northern Norway. Fungal Ecology, 2012, 5, 3-15.	1.6	33
43	Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology, 2012, 18, 1152-1162.	9.5	172
44	Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environmental and Experimental Botany, 2012, 81, 18-25.	4.2	39
45	The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity. PLoS ONE, 2011, 6, e18930.	2.5	39
46	Sámi traditional ecological knowledge as a guide to science: snow, ice and reindeer pasture facing climate change. Polar Record, 2011, 47, 202-217.	0.8	86
47	Impacts of multiple extreme winter warming events on subâ€Arctic heathland: phenology, reproduction, growth, and CO ₂ flux responses. Global Change Biology, 2011, 17, 2817-2830.	9.5	163
48	Contrasting sensitivity to extreme winter warming events of dominant subâ€Arctic heathland bryophyte and lichen species. Journal of Ecology, 2011, 99, 1481-1488.	4.0	69
49	Winter climate change: Ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environmental and Experimental Botany, 2011, 72, 404-408.	4.2	54
50	Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry, 2010, 42, 611-617.	8.8	68
51	Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiologia Plantarum, 2010, 140, 128-140.	5.2	90
52	Winter warming events damage subâ€Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 2009, 97, 1408-1415.	4.0	247
53	Ice encapsulation protects rather than disturbs the freezing lichen. Plant Biology, 2009, 11, 227-235.	3.8	16
54	Impacts of extreme winter warming in the subâ€Arctic: growing season responses of dwarf shrub heathland. Global Change Biology, 2008, 14, 2603-2612.	9.5	158

JARLE WERNER BJERKE

#	Article	IF	CITATIONS
55	New species and new records of Menegazzia (Parmeliaceae, lichenized ascomycetes) from Malaysia and Indonesia. Botanical Journal of the Linnean Society, 2007, 153, 489-499.	1.6	5
56	Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems. , 2006, , 109-120.		2
57	The lichen genus Usnea in Norway north of the Arctic Circle: biogeography and ecology. Nova Hedwigia, 2006, 83, 293-310.	0.4	6
58	Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems. Plant Ecology, 2006, 182, 109.	1.6	10
59	Pannaria isabellina (Vain.) comb. nov., a remarkable lichen species from Chile. Lichenologist, 2005, 37, 47-54.	0.8	16
60	Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen. Phytochemistry, 2005, 66, 337-344.	2.9	77
61	Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic?alpine lichens. Environmental and Experimental Botany, 2005, 53, 139-149.	4.2	49
62	The genus Menegazzia (Parmeliaceae, lichenized Ascomycetes) in the Tibetan region. Nova Hedwigia, 2005, 81, 301-310.	0.4	5
63	A new sorediate, fumarprotocetraric acidâ€producing lichen species ofMenegazzia(Parmeliaceae,) Tj ETQq1 1	0.784314 rg	gBT ₄ /Overlock
64	Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). Polar Biology, 2004, 27, 409-417.	1.2	35
65	Distribution of the lichen genus <i>Flavocetraria</i> (Parmeliaceae, Ascomycota) in the Southern Hemisphere. New Zealand Journal of Botany, 2004, 42, 647-656.	1.1	12
66	Revision of the lichen genus Menegazzia in Japan, including two new species. Lichenologist, 2004, 36, 15-25.	0.8	9
67	Menegazzia subsimilis, a widespread sorediate lichen. Lichenologist, 2003, 35, 393-396.	0.8	12
68	Longâ€ŧerm impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytologist, 2003, 159, 361-367.	7.3	43
69	Distribution and habitat ecology of the sorediate species of Menegazzia (Parmeliaceae, lichenized) Tj ETQq1 I	l 0.784314 r 1.2	gBŢ /Overlock
70	Distribution patterns of usnic acid-producing lichens along local radiation gradients in West Greenland. Nova Hedwigia, 2002, 75, 487-506.	0.4	24
71	Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochemical and Photobiological Sciences, 2002, 1, 678-685.	2.9	80
72	A new fertile species of Menegazzia and notes on two sorediate species from the Neotropics. Lichenologist, 2002, 34, 503-508.	0.8	8

#	Article	IF	CITATIONS
73	A New Sorediate Species of Menegazzia (Parmeliaceae, Lichenized Ascomycota) from Chile. Lichenologist, 2001, 33, 117-120.	0.8	13