Scott S Zamvil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483858/publications.pdf

Version: 2024-02-01

		32410	21239
126	14,922	55	119
papers	citations	h-index	g-index
101	101	101	
131	131	131	16574
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Annals of Neurology, 2022, 91, 268-281.	2.8	39
2	Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine–induced antibody and T cell immunity and function. JCI Insight, 2022, 7, .	2.3	69
3	Reply to "Spinal Cord Atrophy Is a Preclinical Marker of Progressive <scp>MS</scp> ― Annals of Neurology, 2022, 91, 735-736.	2.8	0
4	Persistently reduced humoral and sustained cellular immune response from first to third SARS-CoV-2 mRNA vaccination in anti-CD20-treated multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2022, 60, 103729.	0.9	24
5	A hormonal therapy for menopausal women with MS: A phase Ib/IIa randomized controlled trial. Multiple Sclerosis and Related Disorders, 2022, 61, 103747.	0.9	5
6	Antigen Presentation by B Cells in Multiple Sclerosis. New England Journal of Medicine, 2021, 384, 378-381.	13.9	18
7	A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nature Communications, 2021, 12, 635.	5.8	33
8	CNS Autoimmune Responses in BCMA-Deficient Mice Provide Insight for the Failure of Atacicept in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e973.	3.1	6
9	Can Systemic Anti-CD20 B Cell-Depleting Antibodies Eliminate Meningeal Follicles in Multiple Sclerosis?. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1000.	3.1	0
10	Encephalitis and Myelitis in a Young Woman. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1026.	3.1	1
11	Humoral immune response following SARS-CoV-2 mRNA vaccination concomitant to anti-CD20 therapy in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103251.	0.9	36
12	Targeting B Cells to Modify MS, NMOSD, and MOGAD. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	37
13	Targeting B cells to modify MS, NMOSD, and MOGAD. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	30
14	Lymph node–resident dendritic cells drive T _H 2 cell development involving MARCH1. Science Immunology, 2021, 6, eabh0707.	5.6	10
15	Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
16	Reply: Neither human nor mouse is hypercalcaemic with 250 nmol/l 25-hydroxyvitamin D. Brain, 2020, 143, e10-e10.	3.7	1
17	Mitigating alemtuzumab-associated autoimmunity in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	15
18	Effect of the sphingosine-1-phosphate receptor modulator ozanimod on leukocyte subtypes in relapsing MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	22

#	Article	IF	CITATIONS
19	Ataxin-1 regulates B cell function and the severity of autoimmune experimental encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23742-23750.	3.3	14
20	A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proceedings of the United States of America, 2020, 117, 22932-22943.	3.3	119
21	The immune signatures of multiple sclerosis: Lessons from twin studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24013-24015.	3.3	3
22	Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. American Journal of Neuroradiology, 2020, 41, 2219-2226.	1.2	14
23	Should interferons take front stage as an essential MS disease-modifying therapy in the era of coronavirus disease 2019?. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e811.	3.1	4
24	Glatiramer acetate immune modulates B-cell antigen presentation in treatment of MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	13
25	New cases of vasculitis after alemtuzumab. Multiple Sclerosis Journal, 2020, 26, 1606-1608.	1.4	1
26	Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature Immunology, 2020, 21, 513-524.	7.0	118
27	N2 year in review. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e644.	3.1	1
28	Intrathecal B-cell activation in LGI1 antibody encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	24
29	Microglia complement astrocytes in neuromyelitis optica. Journal of Clinical Investigation, 2020, 130, 3961-3964.	3.9	7
30	High dose vitamin D exacerbates central nervous system autoimmunity by raising T-cell excitatory calcium. Brain, 2019, 142, 2737-2755.	3.7	43
31	Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2019, 16, 203.	3.1	28
32	Reply: Hypercalcaemia rather than high dose vitamin D3 supplements could exacerbate multiple sclerosis. Brain, 2019, 142, e72-e72.	3.7	0
33	B cells in autoimmune and neurodegenerative central nervous system diseases. Nature Reviews Neuroscience, 2019, 20, 728-745.	4.9	190
34	Do maternal anti– <i>N</i> â€methylâ€Dâ€aspartate receptor antibodies promote development of neuropsychiatric disease in children?. Annals of Neurology, 2019, 86, 653-655.	2.8	3
35	Silent progression in disease activity–free relapsing multiple sclerosis. Annals of Neurology, 2019, 85, 653-666.	2.8	265
36	N2 year in review and message from the editor to our reviewers. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e525.	3.1	1

#	Article	IF	CITATIONS
37	Anti-CD20 therapy depletes activated myelin-specific CD8 ⁺ T cells in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25800-25807.	3.3	71
38	Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell, 2019, 176, 610-624.e18.	13.5	241
39	B-Cell Therapies in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a032037.	2.9	60
40	The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a029249.	2.9	45
41	The Gut Microbiome in Neuromyelitis Optica. Neurotherapeutics, 2018, 15, 92-101.	2.1	54
42	Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. MSystems, 2018, 3, .	1.7	56
43	T cells take aim at a ubiquitous autoantigen in multiple sclerosis. Science Translational Medicine, 2018, 10, .	5.8	7
44	A young man with numbness in arms and legs. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e509.	3.1	1
45	Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nature Immunology, 2018, 19, 1212-1223.	7.0	149
46	Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9773-9778.	3.3	82
47	Acute liver injury in a Glatopa-treated patient with MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e368.	3.1	4
48	Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4. Journal of Visualized Experiments, 2017, , .	0.2	4
49	Aryl hydrocarbon receptor activity may serve as a surrogate marker for MS disease activity. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e366.	3.1	4
50	T cells targeting neuromyelitis optica autoantigen aquaporin-4 cause paralysis and visual system injury. Journal of Nature and Science, 2017, 3, .	1.1	6
51	Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. ELife, 2016, 5, .	2.8	210
52	Antibodies in multiple sclerosis oligoclonal bands target debris. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7696-7698.	3.3	37
53	Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14781-14786.	3.3	59
54	Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4777-4782.	3.3	238

#	Article	IF	CITATIONS
55	CNS accumulation of regulatory B cells is VLA-4-dependent. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e212.	3.1	27
56	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e277.	3.1	39
57	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e276.	3.1	35
58	Treatment of spontaneous EAE by laquinimod reduces Tfh, B cell aggregates, and disease progression. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e272.	3.1	31
59	Longâ€ŧerm evolution of multiple sclerosis disability in the treatment era. Annals of Neurology, 2016, 80, 499-510.	2.8	331
60	Gut microbiome analysis in neuromyelitis optica reveals overabundance of <i>Clostridium perfringens</i> . Annals of Neurology, 2016, 80, 443-447.	2.8	125
61	B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight, 2016, 1, e87234.	2.3	51
62	Your nose knows how to target brain inflammation. Brain, 2016, 139, 1866-1869.	3.7	0
63	Reduction of CD8 ⁺ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e76.	3.1	171
64	Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurology, 2015, 72, 815.	4.5	59
65	Unique invariant CD8+T cell population persists in MS. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e140.	3.1	0
66	Glatiramer acetate treatment negatively regulates type I interferon signaling. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e179.	3.1	15
67	The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nature Immunology, 2015, 16, 618-627.	7.0	224
68	<scp>B</scp> â€cell very late antigenâ€4 deficiency reduces leukocyte recruitment and susceptibility to central nervous system autoimmunity. Annals of Neurology, 2015, 77, 902-908.	2.8	41
69	Update on the Autoimmune Pathology of Multiple Sclerosis: B-Cells as Disease-Drivers and Therapeutic Targets. European Neurology, 2015, 73, 238-246.	0.6	1,056
70	Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e62.	3.1	242
71	Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nature Communications, 2015, 6, 8164.	5.8	212
72	Immunodominant T-cell epitopes of MOG reside in its transmembrane and cytoplasmic domains in EAE. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e22.	3.1	27

#	Article	IF	CITATIONS
73	Neither T-helper type 2 nor Foxp3+ regulatory T cells are necessary for therapeutic benefit of atorvastatin in treatment of central nervous system autoimmunity. Journal of Neuroinflammation, 2014, 11, 29.	3.1	22
74	Precision medicine in chronic disease management: The multiple sclerosis <scp>B</scp> io <scp>S</scp> creen. Annals of Neurology, 2014, 76, 633-642.	2.8	53
75	Laquinimod, an up-and-coming immunomodulatory agent for treatment of multiple sclerosis. Experimental Neurology, 2014, 262, 66-71.	2.0	33
76	MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e20.	3.1	24
77	Therapeutic Decisions in Multiple Sclerosis. JAMA Neurology, 2013, 70, 1315-24.	4.5	80
78	MHC class Il–dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. Journal of Experimental Medicine, 2013, 210, 2921-2937.	4.2	336
79	Tob1 plays a critical role in the activation of encephalitogenic T cells in CNS autoimmunity. Journal of Experimental Medicine, 2013, 210, 1301-1309.	4.2	40
80	Laquinimod, a once-daily oral drug in development for the treatment of relapsing–remitting multiple sclerosis. Expert Review of Clinical Pharmacology, 2012, 5, 245-256.	1.3	26
81	Aquaporin 4â€specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize <i>Clostridium</i> ABC transporter. Annals of Neurology, 2012, 72, 53-64.	2.8	281
82	K+ channel alterations in the progression of experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2012, 47, 280-293.	2.1	38
83	Laquinimod, a Quinoline-3-Carboxamide, Induces Type II Myeloid Cells That Modulate Central Nervous System Autoimmunity. PLoS ONE, 2012, 7, e33797.	1.1	86
84	Glatiramer Acetate in the Treatment of Multiple Sclerosis. CNS Drugs, 2011, 25, 401-414.	2.7	150
85	B cells in multiple sclerosis: connecting the dots. Current Opinion in Immunology, 2011, 23, 713-720.	2.4	90
86	Proinflammatory role of aquaporinâ€4 in autoimmune neuroinflammation. FASEB Journal, 2011, 25, 1556-1566.	0.2	159
87	Switching Multiple Sclerosis Patients with Breakthrough Disease to Second-Line Therapy. PLoS ONE, 2011, 6, e16664.	1.1	51
88	Bâ€cell activation influences Tâ€cell polarization and outcome of antiâ€CD20 Bâ€cell depletion in central nervous system autoimmunity. Annals of Neurology, 2010, 68, 369-383.	2.8	261
89	Natalizumab and Progressive Multifocal Leukoencephalopathy. Archives of Neurology, 2010, 67, 923-30.	4.9	105
90	Immunodominant T Cell Determinants of Aquaporin-4, the Autoantigen Associated with Neuromyelitis Optica. PLoS ONE, 2010, 5, e15050.	1.1	42

#	Article	IF	CITATIONS
91	Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1β in human monocytes and multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4355-4359.	3.3	129
92	Depletion of B Lymphocytes From Cerebral Perivascular Spaces by Rituximab. Archives of Neurology, 2009, 66, 1016-20.	4.9	66
93	Pharmacological Treatment of Early Multiple Sclerosis. Drugs, 2008, 68, 73-83.	4.9	41
94	Disease-Modifying Agents for Multiple Sclerosis. Drugs, 2008, 68, 2445-2468.	4.9	63
95	Decrease in the Numbers of Dendritic Cells and CD4+ T Cells in Cerebral Perivascular Spaces Due to Natalizumab. Archives of Neurology, 2008, 65, 1596.	4.9	179
96	Combination therapies for multiple sclerosis: scientific rationale, clinical trials, and clinical practice. Current Opinion in Neurology, 2007, 20, 281-285.	1.8	40
97	Simvastatin regulates oligodendroglial process dynamics and survival. Glia, 2007, 55, 130-143.	2.5	84
98	Mechanism of Action of Glatiramer Acetate in Treatment of Multiple Sclerosis. Neurotherapeutics, 2007, 4, 647-653.	2.1	109
99	Type II monocytes modulate T cell–mediated central nervous system autoimmune disease. Nature Medicine, 2007, 13, 935-943.	15.2	407
100	Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. Journal of Experimental Medicine, 2006, 203, 401-412.	4.2	194
101	Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nature Reviews Immunology, 2006, 6, 358-370.	10.6	581
102	Statins in the treatment of central nervous system autoimmune disease. Journal of Neuroimmunology, 2006, 178, 140-148.	1.1	59
103	How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Annals of Neurology, 2006, 60, 12-21.	2.8	441
104	Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. Journal of Clinical Investigation, 2006, 116, 1037-1044.	3.9	98
105	Therapeutic Considerations for Disease Progression in Multiple Sclerosis. Archives of Neurology, 2005, 62, 1519-30.	4.9	36
106	Drug Insight: using statins to treat neuroinflammatory disease. Nature Clinical Practice Neurology, 2005, 1, 106-112.	2.7	27
107	Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends in Immunology, 2005, 26, 565-571.	2.9	238
108	Transcriptional analysis of targets in multiple sclerosis. Nature Reviews Immunology, 2003, 3, 483-492.	10.6	109

#	Article	IF	CITATIONS
109	Diverse Targets for Intervention during Inflammatory and Neurodegenerative Phases of Multiple Sclerosis. Neuron, 2003, 38, 685-688.	3.8	144
110	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	1.8	78
111	Cutting Edge: Oral Type I IFN-Ï,, Promotes a Th2 Bias and Enhances Suppression of Autoimmune Encephalomyelitis by Oral Glatiramer Acetate. Journal of Immunology, 2002, 169, 2231-2235.	0.4	59
112	The Role of the MHC Class II Transactivator in Class II Expression and Antigen Presentation by Astrocytes and in Susceptibility to Central Nervous System Autoimmune Disease. Journal of Immunology, 2002, 169, 6720-6732.	0.4	83
113	The HMC-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 2002, 420, 78-84.	13.7	1,060
114	Malignant glioma cells use MHC class II transactivator (CIITA) promoters III and IV to direct IFN-I ³ -inducible CIITA expression and can function as nonprofessional antigen presenting cells in endocytic processing and CD4+T-cell activation. Glia, 2001, 36, 391-405.	2.5	46
115	Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. Journal of Clinical Investigation, 2001, 108, 1133-1139.	3.9	78
116	Specific immunotherapy: One size does not fit all. Nature Medicine, 2000, 6, 1098-1100.	15.2	36
117	Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. International Immunology, 1999, 11, 1169-1179.	1.8	48
118	Pathogenesis, diagnosis, and treatment of acute disseminated encephalomyelitis. Current Opinion in Neurology, 1999, 12, 395-401.	1.8	81
119	Effect of Oral Beta Interferon on Subsequent Immune Responsiveness. Annals of the New York Academy of Sciences, 1996, 778, 145-155.	1.8	30
120	Reciprocal expression of co-stimulatory molecules, B7-1 and B7-2, on murine T cells following activation. European Journal of Immunology, 1995, 25, 207-211.	1.6	73
121	B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell, 1995, 80, 707-718.	13.5	1,638
122	Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. International Immunology, 1990, 2, 539-544.	1.8	285
123	Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. Journal of Neuroimmunology, 1988, 19, 21-32.	1.1	149
124	T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 1986, 324, 258-260.	13.7	468
125	T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature, 1985, 317, 355-358.	13.7	519
126	Maturation of Potassium-Stimulated Respiration in Rat Cerebral Cortical Slices. Journal of Neurochemistry, 1982, 39, 274-276.	2.1	21