Randy Ewoldt

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8483848/publications.pdf
Version: 2024-02-01

1	A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 2011, 36, 1697-1753.	11.8	1,109
2	New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 2008, 52, 1427-1458.	1.3	787
3	<i>Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14321-14326.	3.3	347
4	Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheologica Acta, 2010, 49, 191-212.	1.1	273
5	Rheology of Gastric Mucin Exhibits a pH-Dependent Solâ^'Gel Transition. Biomacromolecules, 2007, 8, 1580-1586.	2.6	250
6	Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). Journal of Rheology, 2013, 57, 27-70.	1.3	218
7	Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter, 2007, 3, 634.	1.2	192
8	Experimental Challenges of Shear Rheology: How to Avoid Bad Data. Biological and Medical Physics Series, 2015, , 207-241.	0.3	148
9	Large amplitude oscillatory shear flow of gluten dough: A model power-law gel. Journal of Rheology, 2011, 55, 627-654.	1.3	135
10	On secondary loops in LAOS via self-intersection of Lissajousâ€"Bowditch curves. Rheologica Acta, 2010, 49, 213-219.	1.1	126
11	Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 2013, 52, 201-219.	1.1	125
12	A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials, 2010, 31, 5208-5217.	5.7	118
13	Defining nonlinear rheological material functions for oscillatory shear. Journal of Rheology, 2013, 57, 177-195.	1.3	115

Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration.
Integrative and Comparative Biology, 2009, 49, 40-50.

Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 2019, 23, 100758.

Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries. Journal of Physical Chemistry C, 2018, 122, 8159-8172.

How Dr. Malcom M. Cross may have tackled the development of â€œAn apparent viscosity function for shear thickening fluidsâ€: Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1421-1424.
1.0

Precision rheometry: Surface tension effects on low-torque measurements in rotational rheometers.
Journal of Rheology, 2013, 57, 1515-1532.

Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. ACS Macro
Letters, 2018, 7, 933-937.

Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix.
Biomaterials, 2017, 125, 54-64.

Turbulent and transitional velocity measurements in a rectangular microchannel using microscopic particle image velocimetry. Experimental Thermal and Fluid Science, 2005, 29, 435-446.

Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic
27 liquid. Physical Chemistry Chemical Physics, 2016, 18, 22719-22730.

Constitutive model fingerprints in medium-amplitude oscillatory shear. Journal of Rheology, 2015, 59, 557-592.

> 29 The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory
> shear. Journal of Rheology, 2014, 58, 891-910.

30 Operating windows for oscillatory interfacial shear rheology. Journal of Rheology, 2020, 64, 141-160.
1.3

47

1 Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip.
31 Nanotechnology, 2012, 23, 215301.

Non-linear viscoelasticity of hagfish slime. International Journal of Non-Linear Mechanics, 2011, 46, 627-636.

Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive
pNIPAM microgel suspensions. Soft Matter, 2019, 15, 1038-1052.

A simple thixotropicâ€"viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS). Journal of Non-Newtonian Fluid Mechanics, 2014, 208-209, 27-41.
1.0

43

Chemical Society, 2019, 141, 2838-2842.
6.6

43

37 Extending yield-stress fluid paradigms. Journal of Rheology, 2018, 62, 357-369.	
38	From ultra-soft slime to hard Â-keratins: The many lives of intermediate filaments. Integrative and Comparative Biology, 2009, 49, 32-39.

39 Controllable adhesion using field-activated fluids. Physics of Fluids, 2011, 23, .

1.6

37

40 Particleâ€Free Emulsions for 3D Printing Elastomers. Advanced Functional Materials, 2018, 28, 1707032.
7.8

37

41	Vibration of fresh concrete understood through the paradigm of granular physics. Cement and Concrete Research, 2019, 115, 31-42.	4.6	37
42	Quantitative rheological model selection: Good fits versus credible models using Bayesian inference. Journal of Rheology, 2015, 59, 667-701.	1.3	36
43	Asymmetric surface textures decrease friction with Newtonian fluids in full film lubricated sliding contact. Tribology International, 2016, 97, 490-498.	3.0	34
44	A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear. Journal of Rheology, 2017, 61, 643-665.	1.3	34
45	Dual function organic active materials for nonaqueous redox flow batteries. Materials Advances, 2021, 2, 1390-1401.	2.6	33

46 Designing Complex Fluids. Annual Review of Fluid Mechanics, 2022, 54, 413-441.

```
47 Flow accelerates adhesion between functional polyethylene and polyurethane. AICHE Journal, 2011, 57,
3496-3506.
```

1.8

31

48 Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries. Journal of Power Sources, 2017, 361, 334-344.
4.0

31

$49 \quad$| Modulation of the Electrochemical Reactivity of Solubilized Redox Active Polymers via |
| :--- |
| Polyelectrolyte Dynamics. Journal of the American Chemical Society, 2018, 140, 2093-210 |

Modulating Noncovalent Cross-links with Molecular Switches. Journal of the American Chemical Society, 2019, 141, 3597-3604.

Sticking and splashing in yield-stress fluid drop impacts on coated surfaces. Physics of Fluids, 2015, 27,
1.6

27

[^0]55 Dynamic mechanical measurement of the viscoelasticity of single adherent cells. Applied Physics
Letters, 2016, 108,

Inferring the Nonlinear Mechanisms of a Reversible Network. Macromolecules, 2018, 51, 8772-8789.
2.2

Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries. ACS Energy Letters, 2021, 6, 3932-3943.

Relaxation of Vitrimers with Kinetically Distinct Mixed Dynamic Bonds. Macromolecules, 2022, 55, 4450-4458.

Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions. Journal of Experimental Biology, 2016, 219, 2908-2919.
0.8

Selfâ $€$ Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers. Advanced Materials Technologies, 2022, 7, .

61 Plasmonic Optical Trapping in Biologically Relevant Media. PLoS ONE, 2014, 9, e93929.
1.1
1.6
1.8

Journal, 2013, 59, 3391-3402.

Self-Assembled Solute Networks in Crowded Electrolyte Solutions and Nanoconfinement of Charged Redoxmer Molecules. Journal of Physical Chemistry B, 2020, 124, 10226-10236.

Base-triggered self-amplifying degradable polyurethanes with the ability to translate local
stimulation to continuous long-range degradation. Chemical Science, 2020, 11, 3326-3331.

Crowded electrolytes containing redoxmers in different states of charge: Solution structure, properties, and fundamental limits on energy density. Journal of Molecular Liquids, 2021, 334, 116533.

Non-integer asymptotic scaling of a thixotropic-viscoelastic model in large-amplitude oscillatory shear. Journal of Non-Newtonian Fluid Mechanics, 2016, 227, 80-89.

On fitting data for parameter estimates: residual weighting and data representation. Rheologica Acta, 2019, 58, 341-359.

Viscous flow properties and hydrodynamic diameter of phenothiazine-based redox-active molecules in different supporting salt environments. Physics of Fluids, 2020, 32, .

Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheologica Acta, 2015, 54, 223-233.

Thermoresponsive Stiffening with Microgel Particles in a Semiflexible Fibrin Network.
Macromolecules, 2019, 52, 3029-3041.

TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries. Journal of
Materials Chemistry A, 2021, 9, 16769-16775.
73 An Ontology for Large Amplitude Oscillatory Shear Flow. AIP Conference Proceedings, 2008, , . 13

74 Shear stress characteristics of microtextured surfaces in gap-controlled hydrodynamic lubrication.

Journal of Colloid and Interface Science, 2021, 601, 886-898.
81 Design and fabrication of ceramic beads by the vibration method. Journal of the European Ceramic
Society, 2015, 35, 3587-3594.
Field sensitivity of flow predicti
Mechanics, 2018, 257, 71-82.
1.0 1084 Questioning a fundamental assumption of rheology: Observation of noninteger power expansions.Journal of Rheology, 2020, 64, 625-635.
1.3

10
84 Journal of Rheology, 2020, 64, 625-635.
1.2

9

The weakly nonlinear response and nonaffine interpretation of the
97 A Multiobjective Adaptive Surrogate Modeling-Based Optimization (MO-ASMO) Framework Using Efficient Sampling Strategies. , 2017, , .Passive Hydraulic Training Simulator for Upper Arm Spasticity. Journal of Mechanisms and Robotics,2020, 12, .

[^0]: ```
 A critical gel fluid with high extensibility: The rheology of chewing gum. Journal of Rheology, 2014,
 58, 821-838.
    ```

