## Bingchao Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483667/publications.pdf Version: 2024-02-01



ΒΙΝΟCΗΛΟ ΟΙΝ

| #  | Article                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science, 2021, 373, 556-561.                                                          | 12.6 | 270       |
| 2  | High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375, 1385-1389.                                                       | 12.6 | 194       |
| 3  | Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification.<br>Journal of the American Chemical Society, 2019, 141, 1141-1149.                    | 13.7 | 137       |
| 4  | Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909. | 13.7 | 94        |
| 5  | Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe.<br>Journal of the American Chemical Society, 2018, 140, 13097-13102.                | 13.7 | 77        |
| 6  | High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application. Nano Energy, 2020, 72, 104742.                                                 | 16.0 | 58        |
| 7  | Slowing down the heat in thermoelectrics. InformaÄnÃ-Materiály, 2021, 3, 755-789.                                                                                                      | 17.3 | 57        |
| 8  | Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Metals, 2018, 37, 343-350.                                                                                             | 7.1  | 55        |
| 9  | Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium<br>Alloying. ACS Applied Energy Materials, 2020, 3, 2049-2054.                       | 5.1  | 52        |
| 10 | Estimation of the potential performance in p-type SnSe crystals through evaluating weighted mobility and effective mass. Journal of Materiomics, 2020, 6, 671-676.                     | 5.7  | 38        |
| 11 | Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion.<br>Rare Metals, 2021, 40, 2819-2828.                                               | 7.1  | 33        |
| 12 | Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS. Advanced Functional<br>Materials, 2021, 31, 2102185.                                                       | 14.9 | 33        |
| 13 | Comprehensive Investigation on the Thermoelectric Properties of pâ€Type PbTeâ€PbSeâ€PbS Alloys. Advanced Electronic Materials, 2019, 5, 1900609.                                       | 5.1  | 29        |
| 14 | Effective dopants in p-type elementary Te thermoelectrics. RSC Advances, 2017, 7, 17682-17688.                                                                                         | 3.6  | 24        |
| 15 | Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. Journal of Solid State Chemistry, 2019, 273, 85-91.                    | 2.9  | 23        |
| 16 | An approach of enhancing thermoelectric performance for p-type PbS: Decreasing electronic thermal conductivity. Journal of Alloys and Compounds, 2020, 820, 153453.                    | 5.5  | 22        |
| 17 | Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor. Chinese Physics Letters, 2020, 37, 087104.                         | 3.3  | 19        |
| 18 | Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2. Materials Today Physics, 2021, 21, 100505.                            | 6.0  | 17        |

Bingchao Qin

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation. Materials Today Physics, 2021, 20, 100452. | 6.0 | 16        |
| 20 | Enhanced thermoelectric perfromance in cubic form of SnSe stabilized through enformatingly alloying AgSbTe2. Acta Materialia, 2022, 227, 117681.                                         | 7.9 | 16        |
| 21 | Distinct electron and hole transports in SnSe crystals. Science Bulletin, 2022, 67, 1105-1107.                                                                                           | 9.0 | 16        |
| 22 | Synergistically enhanced thermoelectric properties in n-type Bi6Cu2Se4O6 through inducing resonant<br>levels. Acta Materialia, 2022, 232, 117930.                                        | 7.9 | 13        |
| 23 | Enhanced thermoelectric performance in SnTe due to the energy filtering effect introduced by Bi2O3.<br>Materials Today Energy, 2022, 25, 100985.                                         | 4.7 | 13        |
| 24 | Understanding the electrical transports of <i>p</i> -type polycrystalline SnSe with effective medium theory. Applied Physics Letters, 2021, 119, .                                       | 3.3 | 8         |
| 25 | Pressure-induced enhancement of thermoelectric power factor in pristine and hole-doped SnSe crystals. RSC Advances, 2019, 9, 26831-26837.                                                | 3.6 | 7         |
| 26 | Evaluation on the Thermoelectric Cooling Ability of PbTe. ACS Applied Energy Materials, 2021, 4, 11813-11818.                                                                            | 5.1 | 5         |
| 27 | A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8, 982-991.                            | 5.7 | 5         |
| 28 | Investigations on the Thermoelectric Transport Properties in the Holeâ€doped<br>La <sub>2</sub> CuO <sub>4</sub> . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .      | 1.2 | 2         |